
EXERCISE 11
Model-Free Control with tabular and linear

methods

Tue Herlau
tuhe@dtu.dk

19 April, 2024

Objective: Value-function based methods can often converge faster than Monte-Carlo
methods and form the basis of several recent successes of reinforcement learning. Wewill
start by investigating two important control methods which use action-value functions:
Sarsa learning, which is on-policy, and Q-learning which is off policy. In the later part of
the exercise we will investigate n-step TD learning, which combines advantages of MC
and TD(0) learning, a subject which will lead to eligibility traces next week.

In the last part of todays exercise we will look at value function approximations which
are essential for scaling up reinforcement learning. These introduce a number of com-
plications and design choices we will return to in two weeks, but to avoid much of that
discussion we will focus on the important case of linear approximators.

(22 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex11.html

Contents
1 Exam question: Q-learning and Sarsa 2

2 Tabular control methods 3
2.1 Q-Learning (q_agent.py) . 3
2.2 Sarsa (sarsa_agent.py) . 4

3 Linear feature encoding 4
3.1 Episodic semi-gradient Q-learning (semi_grad_q.py) 5
3.2 Episodic semi-gradient Sarsa (semi_grad_sarsa.py)// 6

4 n-step Sarsa (nstep_sarsa_agent.py)// 7

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 11 19 April, 2024

Figure 1: A gridworld environment. The figure shows the current Q-values for Sarsa

1 Exam question: Q-learning and Sarsa

☞Suppose that Sarsa (using discount factor γ = 1, a learning rate α = 0.9 and an explo-
ration rate of ε = 0.1) is applied to the Gridworld shown in fig. 1. The living reward is
0, and the dynamics is deterministic. Recall that pacman stay at the current state if he
choose an action which moves him into a wall. The current state is indicated by Pacman.

(a.) Suppose that in the next step of the Sarsa algorithm, the agent takes (and execute)
the action North in the current position s. Upon taking this action, theQ-value associated
with the red cross Q(s, North) will be updated by Sarsa.
What are the possible values of Q(s, North) after this step? (list all of them).

(b.) In the previous question, we took one step, performed a single action North, and
updated one Q-value.
In this question, suppose again that the agent starts in the position indicated in fig. 1
and assume Sarsa is applied to update the Q-values shown in the figure.
Different sequences of future actions will result in different Q-values being updated.
What are the minimum number of steps which are required before the Q-value associ-
ated with the green circle can take a value different than 0, and what actions will the
agent take in this case? Give your answer as a list of actions.

(c.) Sarsa learning has clearly not converged in the example shown above. However,
assume we apply a more realistic version of Sarse where γ = .95, and where importantly
α decrease to 0 at a rate satisfying the stochastic approximation conditions [SB18, Eq.
(2.7)] for convergence so that the Q-values converge to their true values under Sarsa.
Consider the two Q-value associated with moving North and East Qn, Qe, indicated by
the blue n, e-letters in fig. 1. After convergence, it must be the case that either they
will have the same value, Qn = Qe, or one will be greater than the other: Qn > Qe or
Qn < Qe. State which is the case and provide a clear and specific argument for your
answer.

EXERCISE 11 19 April, 2024

2 Tabular control methods

In this section we will consider the basic (tabular) basic versions ofQ and Sarsa learning,
and later extend sarsa with linear function approximators (we will return to Q learning
when we discuss deep reinforcement learning).

2.1 Q-Learning (q_agent.py)

Our implementation will be based on [SB18, Section 6.5], i.e. we update one Q-value
at a time and use ε-greedy exploration. Note we will be extending the Agent -class we
worked with last week and I encourage the reader to look at the code for this class for
ideas, for instance the Agent.pi_eps -function.

Complete the implementation of the Q-learning agent and test it on the cliff walking
task. The obtained result should be comparable to the figure in [SB18, Example 6.6],
however I think that this figure is averaged over quite a few runs. I am not entirely
sure what α should be, so I selected α = 0.5 because this was the value one page
back; are other values better?

Problem 1 Q-learning

Info: Writing the Q-learning is about 2-lines of code, however it takes a little work to
make it robust to the various use cases we can imagine such as action spaces which
depend on state etc. I strongly recommend using the build-in Agent.Q -data-structure
to store the Q-values as this will make the code significantly more robust.

0 25 50 75 100 125 150 175 200
Episode

100

80

60

40

20

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Q-learning on CliffWalking

(10x)cliffwalk_Q
(10x)cliffwalk_VI
(10x)cliffwalk_VI_optimal

i

EXERCISE 11 19 April, 2024

2.2 Sarsa (sarsa_agent.py)
The next method we will consider will be Sarsa for on-policy control as in [SB18, Section
6.4]. Be warned Sarsa is a bit more tricky to implement as it requires us to know the
future actions (here, A′) "in advance" compared to Q-learning.

In practice, this means we must generate the A′ values in the Agent.train function
(where we know S ′), store the action, and then simply return the action when π is called.
This works well for all steps except the first (t = 0) where agent.train has not yet been
called, and so in the case where t = 0 we must actually generate the action similar to
Q-learning when the policy is called.

Complete the implementation of the Sarsa agent and reproduce the result in the
figure in [SB18, Example 6.6]; however note this is with the caveat that I am not
entirely sure about the parameters/runs used to generate the figure.

Problem 2 Sarsa-control

Info:

0 25 50 75 100 125 150 175 200
Episode

100

80

60

40

20

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Q and Sarsa learning on CliffWalking

(10x)cliffwalk_Q
(10x)cliffwalk_VI
(10x)cliffwalk_VI_optimal
(10x)cliffwalk_Sarsa

i

3 Linear feature encoding
In this section we will consider approximations of the value or action-value function.
This means that we represent the action-value function q(s, a) using an approximation

q(s, a) ≈ q̂(s, a,w)

depending on a weight-vectorw which we have to learn. As discussed in [SB18, Chapter
11] there are many choices available for the function appropriator, and since we do

EXERCISE 11 19 April, 2024

not wish these choices to get in the way of the learning algorithms we will as a first
step consider the case where q̂(s, a,w) is linear; as a benefit, this also allows us to be
consistent with the methods in [SB18, Chapter 12]. In other words we assume:

q(s, a) ≈ q̂(s, a,w) = x (s, a)⊤w (1)

here, x : S ×A 7→ Rd is a functionwhichmaps each state, action pair into a d-dimensional
feature vector. We have to choose this function based on one of the methods described
in [SB18, Section 9.5]. Note some of the algorithms we will see momentarily are based
on the gradient, but this is easy to compute in a linear representation:

∇q̂(s, a,w) = x (s, a)

There are a multitude of ways to construct the function x(s, a) (as you can tell in Todays
reading from [SB18]), but since the details are not that interesting we will delegate this
functionality to a special class. You can find more information in the comments to today’s
code or in the online documentation.

3.1 Episodic semi-gradient Q-learning (semi_grad_q.py)
Even though the book focuses on Sarsa (on policy) learning with approximations, we will
first discuss Q-learning as it is simpler and we can re-use our Q-learning code when we
later build the Sarsa implementation.

the ideas are easier introduced in the context of Q-learning. The actual change to the
basic Q-learning method is one line, namely that instead of doing this update:

Q(S,A)← Q(S,A) + αδ, δ =

[
R + γmax

a
Q
(
S ′, a

)
−Q(S,A)

]
we do this:

w← w + αδ∇q̂ (S,A,w)

To implement this, we need an actual feature approximator. For that purpose I have
made a small tile encoder using the same tile-encoding scheme as Sutton. This means
that x(s, a) will be binary. Using the encoder is very easy, the important parts are these:

1 # semi_grad_q.py
2 class LinearSemiGradQAgent(QAgent):
3 def __init__(self, env, gamma=1.0, alpha=0.5, epsilon=0.1, q_encoder=None):
4 """ The Q-values, as implemented using a function approximator, can now be

accessed as follows:↪→

5

6 >> self.Q(s,a) # Compute q-value
7 >> self.Q.x(s,a) # Compute gradient of the above expression wrt. w
8 >> self.Q.w # get weight-vector.
9

10 I would recommend inserting a breakpoint and investigating the above
expressions yourself;↪→

11 you can of course al check the class LinearQEncoder if you want to see how it
is done in practice.↪→

EXERCISE 11 19 April, 2024

12 """
13 super().__init__(env, gamma, epsilon=epsilon, alpha=alpha)
14 self.Q = LinearQEncoder(env, tilings=8) if q_encoder is None else q_encoder

Note in particular the example in the comments: this will be how we access the x-
feature vector and compute the q-values.

Complete the implementation of the linear semi-gradient Q-learning agent. It might
be of help comparing the semi-gradient version of Sarsa ([SB18, Section 10.1]) to
the tabular version to better understand the new notation.

Problem 3 Semi gradient Q-learning

Info: The script tries to solve theMountainCar example (same setup as [SB18, Figure
10.2]), and you might consider reducing the number of runs while you debug your
code. I obtain the following result:

0 50 100 150 200 250 300
Episode

150

200

250

300

350

400

450

500

Le
ng

th

(10x)mountaincar_semigrad_q

i

3.2 Episodic semi-gradient Sarsa (semi_grad_sarsa.py)//
Our second task will be episodic semi-gradient Sarsa [SB18, Section 10.1]. The code
is nearly identical to the basic Sarsa method we just implemented with the feature-
approximator idea added back in, and I would therefore recommend starting with the
tabular Sarsa solution.

Complete the implementation of the linear semi-gradient Sarsa-learning agent from
[SB18, Section 10.1]).

Problem 4 Semi gradient Sarsa-learning

EXERCISE 11 19 April, 2024

Info: I have added a check to see if the weights diverge which happened to me in
some of the problems. It might also be of use to add a regularization term, however
I have not tested this idea.

0 50 100 150 200 250 300
Episode

100

150

200

250

300

350

400

450

500

Le
ng

th

(10x)mountaincar_semigrad_q
(10x)mountaincar_Sarsa

Often, the averaging can hide important details about the individual runs, such
as whether the average performance is highly driven by outliers. I have included
options to turn off averaging and get the individual runs as shown below:

0 50 100 150 200 250 300
Episode

100

150

200

250

300

350

400

450

500

Le
ng

th

(10x)mountaincar_semigrad_q
(10x)mountaincar_Sarsa

i

4 n-step Sarsa (nstep_sarsa_agent.py) //
Thismethod is included for completeness, but I feel it is reasonable to understand n-
step methods theoretically since the implementation is annoying. The final method
will be Sarsa for on-policy control as in [SB18, Section 7.2].

EXERCISE 11 19 April, 2024

Be warned Sarsa is a bit more tricky to implement as it requires us to know the
future actions (here, At+k) "in advance" relatively to Q-learning in order to compute the
return, however it is in my opinion very worthwhile to implement this method in order
to properly understand eligibility traces which will be the subject next week.

In our implementation, we store the previous n+1 values of S,A,R in lists as a buffer
so we can compute the return. Then, once that buffer has enough elements (the check
is already in the code as given), we can perform the update of the Q-value for the past
time step τ = t− n+ 1 (as in the pseudo code). This requires us to compute the return,
starting in τ and counting n steps into the future, but is identical to the pseudo code.

Note that when the environment terminates (i.e. done=True) we still have n miss-
ing updates we must perform on the buffer elements, however these updates should be
similar to that for a given τ and thus the code is re-used.

This is complicated, and you are likely to make a bug along the way. However noting
that n = 1 corresponds to regular Sarsa, we can check that we compute the same updates
in this case. I have inserted such a check and I strongly recommend debugging the code
for the n = 1 case to ensure it works before moving on to n > 1.

Note some methods are abstracted out to make the semi-gradient easier to imple-
ment, but if you want to follow this path is up to you.

Complete the implementation of the n-step Sarsa agent and reproduce figures com-
parable to [SB18, Example 6.6] using n = 5; Note I am not sure about the settings of
the parameters and you might be able to find better parameters or a nicer example.

Problem 5 n-step Sarsa-control

Info: With the caveat I am not sure about the settings for the simulations I get the
following results. I think what they indicate is that n-step Sarsa perhaps learn a bit
faster but with more variance relative to Sarsa (which is quite natural considering
what we know about MC learning)

0 25 50 75 100 125 150 175 200
Episode

100

80

60

40

20

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(10x)cliffwalk_Q
(10x)cliffwalk_Sarsa
(10x)CliffWalking-v0_SarsaN_1_0.1_0.5_5

i

EXERCISE 11 19 April, 2024

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).

	Exam question: Q-learning and Sarsa
	Tabular control methods
	Q-Learning (q_agent.py)
	Sarsa (sarsa_agent.py)

	Linear feature encoding
	Episodic semi-gradient Q-learning (semi_grad_q.py)
	Episodic semi-gradient Sarsa (semi_grad_sarsa.py) '057'057

	n-step Sarsa (nstep_sarsa_agent.py) '057'057

