
EXERCISE 13
Q-learning and deep-Q learning

Tue Herlau
tuhe@dtu.dk

3 May, 2024

Objective: The main goal of todays exercise is to implement and play with deepQ learn-
ing. Deep-Q learning can be though of as a combination of deep function approximators
with (basic) model-based learning and an idea for reducing bias in Q-values. We will
begin by exploring these two ideas in isolation in the tabular format to see they solve
ideas present in any form of Q-learning (hence, it would also be a good idea to use them
for the function approximation method) and only then implement DQN. Note that todays
exercise can be completed using either Keras or Pytorch. (30 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex13.html

Contents
1 Theoretical problem: Baselines 2

2 Dyna-Q (dyna_q.py) 2

3 Tabular double-Q learning (tabular_double_q.py) 4
3.1 Maximization-bias example (maximization_bias_environment.py)⋆ . 6

4 Deep Q learning⋆ 6
4.1 Implementation details . 7

4.1.1 The replay buffer . 7
4.1.2 The deep network . 7
4.1.3 Scheduling of learning and exploration rate 8
4.1.4 Other details . 8

4.2 Classical deep Q learning with replay buffer (deepq_agent.py) 9
4.3 Double-Q learning (double_deepq_agent.py) ⋆ 9
4.4 Dueling-Q networks (duel_deepq_agent.py⋆⋆) 10

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 13 3 May, 2024

1 Theoretical problem: Baselines

☞The idea in Dueling Q-networks is that we write the Q-function as:

Q(s, a) = h(s) + g(s, a)−max
a

g(s, a)

Where h and g are two functions that the dueling Q-learning method then learn1.
Assume that we have successfully found the optimal Q-functions, i.e., the Q-function

satisfy the Bellman optimality equation:

Q(s, a) = E[r + γmax
a′

Q(s′, a′)|s, a]

Show that h must be equal to the optimal value function, i.e., that it satisfies:

V (s) = max
a

E[r + γV (s′)|s, a]

2 Dyna-Q (dyna_q.py)

The Dyna-Q method is the standard Q-learning algorithm augmented with off-policy
learning from samples drawn from a model. In practice, models of the environment
are not easy to come by, so our model of the environment will simply consist of old
observed transitions we append to a list (the replay buffer). Note in this formulation we
don’t use that the model is deterministic, and the method can therefore be used on any
environment with ease.

Complete the implementation of the Dyna-Q agent and evaluate it on the simple
MazeGrid environment as in [SB18, Example 8.2].

Problem 1 Dyna-Q agent

1it is not important how these functions are learned right now but if you are curious, you can implement
it during the last of Todays exercise

EXERCISE 13 3 May, 2024

Info: Your results should be comparable to those in [SB18], however we don’t have
to initialize with a particular seed to show superior performance.

0 10 20 30 40 50
Episode

0

100

200

300

400

500
Le

ng
th

Dyna Q on simple Maze (Figure 8.2)
(12x)bmaze_QLearner_0.95_0.1_0.1
(12x)bmaze_Sarsa0.95_0.1_0.1
(12x)bmaze_SarsaLambda_0.95_0.1_0.1_0.9
(12x)bmaze_DynaQ_0.95_0.1_0.1_5
(12x)bmaze_DynaQ_0.95_0.1_0.1_50

i

The use of a replay buffer (or model in the current terminology) also works for non-
deterministic environments and offer a large benefit. To test this, complete the code
in the second part of the exercise and test Dyna-Q on the windy gridworld environ-
ment

Problem 2 Dyna-Q agent on Cliffwalk

Info: I obtain the following results, which we can compare to our previous results
where we compared against Sarsa. What are your conclusions of the relative perfor-
mance of Q-learning, Sarsa and Dyna-Q? Why does Sarsa still seem to obtain higher
asymptotic performance (and how would you fix it)?

0 25 50 75 100 125 150 175 200
Episode

140

120

100

80

60

40

20

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Dyna-Q learning on CliffWalking

(8x)bcliff_QLearner_1_0.1_0.5
(8x)bcliff_Sarsa1_0.1_0.5
(8x)bcliff_SarsaLambda_1_0.1_0.5_0.9
(8x)bcliff_DynaQ_1_0.1_0.5_5
(8x)bcliff_DynaQ_1_0.1_0.5_50

i

EXERCISE 13 3 May, 2024

3 Tabular double-Q learning (tabular_double_q.py)

Our next warm-up method will be the tabular double-Q learning method from [SB18,
Section 6.7]. The datastructure for the Q-values will be exactly as before and have al-
ready been initialized in the code, but you have to complete the update equations, how-
ever take care which of the Q-values you use (Q1 or Q2) in the update rules. We will first
test the method on the Cliffwalking environment. It should be noted that the Q-values
found by double-Q will converge to the same value as regular Q-learning, but the con-
vergence properties are different and the resulting method will be more robust which is
particularly important in conjunction with function approximators.

Complete the code for the double-Q agent and test it on the cliffwalk example.
Problem 3 Tabular double-Q agent on Cliffwalk

EXERCISE 13 3 May, 2024

Info: I obtain the following results using a value of α = 0.25. Note convergence
of double-Q learning takes roughly twice as long as Sarsa and Q-learning. Can you
explain why?

0 100 200 300 400 500
Episode

100

80

60

40

20

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Double-Q learning on CliffWalking

(20x)doubleq_cliffwalk_QLearner_1_0.1_0.25
(20x)doubleq_cliffwalk_Sarsa1_0.1_0.25
(20x)doubleq_cliffwalk_TabularDoubleQ_1_0.1_0.25

The double Q-learning algorithm seems to converge to the same performance
of Sarsa, which is quite strange in the context of the problem (recall the reason Q-
learning performs worse than Sarsa is because Sarsa will adapt to the ε = 0.1-greedy
exploration and steer clear of the cliff). I actually find it difficult to explain why
double-Q perform so relatively well on this problem, but perhaps you can come up
with an explanation?

The effect is entirely due to the (relative) high exploration rate α, as can be veri-
fied by a long simulation using a lower (α = 0.02 rate of exploration as shown below:

0 1000 2000 3000 4000 5000
Episode

100

80

60

40

20

0

20

40

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Double-Q learning on Cliffwalk (long)
(3x)doubleq_cliffwalk_long_QLearner_1_0.1_0.02
(3x)doubleq_cliffwalk_long_Sarsa1_0.1_0.02
(2x)doubleq_cliffwalk_long_TabularDoubleQ_1_0.1_0.02

i

EXERCISE 13 3 May, 2024

3.1 Maximization-bias example (maximization_bias_environment.py)⋆
We will next reproduce the results of the Maximization Bias example from [SB18, Ex-
ample 6.7]. We will use a finite version of the environment because it will be quick to
implement using our existing tools we encountered in an earlier exercise, however the
discretization should have no effect. Complete the code for building the environment
(i.e. what happens in state A) and run the simulations tabular_double_q.py

Implement the remaining part of the maximization-bias example (recall the format
of the MDP is a dictionary of the form {..., (state, reward): probability, ... })
and re-produce the example figure.

Problem 4 Maximization-Bias example

Info: Since we don’t have an easy way to get the number of left-actions in a given
state, I simply plot the trajectory length which measures the same thing. You should
get a result comparable to the following, which indicates gross over-estimation (and
therefore a poor policy) during the initial training.

0 50 100 150 200 250 300
Episode

1.0

1.2

1.4

1.6

1.8

2.0

Le
ng

th

Double-Q learning on Maximization-Bias ex. (Figure 6.5)
(100x)bias_QLearner_1.0_0.1_0.1
(100x)bias_Sarsa1_0.1_0.1
(100x)bias_TabularDoubleQ_1.0_0.1_0.1

i

4 Deep Q learning⋆

We will now combine the previous two ideas, a replay buffer and double-Q learning,
with a neural function approximator to obtain variants of the deep Q learning (DQN).
There are three annoying things to be aware of when working with DQN,

• All sensible implementations have to rely on a DQN framework such as Keras or
pytorch

EXERCISE 13 3 May, 2024

• The methods will have many tunable parameters and the simulations are likely to
take a long time to converge

• There are no convergence guarantees and results are often highly dependable on
seeds

4.1 Implementation details

To somehow limit these annoyances we will work on a very small environment (Cart-
pole) such that simulations can complete in a few minutes and secondly, abstract all the
learning methods to a separate class. However note that these issues aside, we will end
up with a real DQN implementation, and it should converge to a good controller on an
Atari game given a few days of training.

4.1.1 The replay buffer

The replay buffer plays the role of the memory list in Dyna-Q. An example of how to use
it is given below:

1 # deepq_agent.py
2 self.memory = BasicBuffer(replay_buffer_size) if buffer is None else buffer
3 self.memory.push(s, a, r, sp, done) # save current observation
4 """ First we sample from replay buffer. Returns numpy Arrays of dimension
5 > [self.batch_size] x [...]]
6 for instance 'a' will be of dimension [self.batch_size x 1].
7 """
8 s,a,r,sp,done = self.memory.sample(self.batch_size)

The main difference is it has a maximum size (first-in first-out, to avoid using all the
memory on the computer) and an explicit sample function. The sample function takes
an integer argument (batch_size) and return that number of samples stacked together.
In other words, if s is n-dimensional, then s in the above will be a numpy Array of size

(batch_size ×n)

(and similar a , r , and so on). In the following, assume all occurrences of s, r, etc. will
have a batch-dimension.

4.1.2 The deep network

To make things easier I have abstracted everything relating to pytorch into a separate
class so as to make it more clear which parts of DQN has to do with the actual method,
and which has to do with the pytorch. This means you have to implement a single class
with three relevant methods, see dqn_network.py . The first two evaluate the Q-values
and fit the network:

EXERCISE 13 3 May, 2024

1 # irlc/ex13/lecture_12_examples.py
2 # Initialize a network class
3 self.Q = Network(env, trainable=True) # initialize the network
4 """ Assuming s has dimension [batch_dim x d] this returns a float numpy Array
5 array of Q-values of [batch_dim x actions], such that qvals[i,a] = Q(s_i,a) """
6 qvals = self.Q(s)
7 actions = env.action_space.n # number of actions
8 """ Assume we initialize target to be of dimension [batch_dim x actions]
9 > target = [batch_dim x actions]

10 The following function will fit the weights in self.Q by minimizing
11 > ||self.Q(s)-target||^2
12 (averaged over Batch dimension) using one step of gradient descent
13 """
14 self.Q.fit(s, target)

The fit method might seem a bit odd as it has dimension of actions, but if target is
initialized by having most entries equal toQ(s, a), and only differ for the relevant actions
where we want to adapt Qw(si, ai) towards yi, it can implement the Q-learning objective
function.

Finally, to implement double-Q learning, we have to adapt weights in one network
from another. This can be done using:

1 # irlc/ex13/lecture_12_examples.py
2 self.Q2 = Network(env, trainable=True)
3 """ Update weights in self.Q2 (target, phi') towards those in Q (source, phi)
4 with a factor of tau. tau=0 is no change, tau=1 means overwriting weights
5 (useful for initialization) """
6 self.Q2.update_Phi(Q2, tau=0.1)

4.1.3 Scheduling of learning and exploration rate

It is common in Q learning to schedule learning and exploration rate, and in particular
starting out with a high exploration rate early is of importance. The exploration rate ε
will therefore be a function in our implementation of the number of episodes (specifically,
it will decrease linearly, however 1

n
is another popular choice). The methods appears less

sensitive to scheduling α, however it is important to select a suitably low value to avoid
divergence.

4.1.4 Other details

For any real use a deep Q learning method should allow us to manage experiments
(which the train method already does), but also store simulations and later resume
them. For completeness, and in case anyone want to try to the Atari example, I have
implemented this functionality using save and load methods which should be used for
long simulations. For our purposes these can be ignored.

EXERCISE 13 3 May, 2024

4.2 Classical deep Q learning with replay buffer (deepq_agent.py)
The first method we will implement will be the basic deep-Q learning method with a
replay buffer. The implementation is actually very short (only about 30-40 lines) and I
recommend reading through it for completeness. One thing to be aware of is that when s
is a terminal state, i.e. ST = s, thenQ(s, a) should be zero. In the tabular implementation
this was guaranteed, but here you should multiply by 1-done to ensure this is the case.

Note the simulation script save intermediate results thus allowing us to continue sim-
ulations later; this is not important for our short example, however it would be a good
idea for more time-consuming simulations.

Complete the implementation of the Q-learning method and evaluate it on the Cart-
pole environment.

Problem 5 Basic deep Q learning

Info: I get the following results:

0 25 50 75 100 125 150 175 200
Episode

0

25

50

75

100

125

150

175

200

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(2x)cartpole_dqn

As we see the Agent solves the environment, but it is not very stable and individual
runs has a fair amount of variability. I have not been able to find the source of this
variability, but I suspect it might be the network architecture (fewer layers), layer
initialization or something along those lines. It might also be something specific with
my computer, since the parameters are taken from online implementations which
seem to perform slightly less well than reported when I run them.

i

4.3 Double-Q learning (double_deepq_agent.py) ⋆
For double-Q learning we need to introduce a target network (This network plays the
role of q̂ϕ′(s, a) in the slides) and it will be denoted target in the code (see included

EXERCISE 13 3 May, 2024

comments). Asides this most of the code will be similar to the DQN agent which we can
inherit from.

To adapt the weights, use the function in the DQNNetwork class (see example above).

Complete the implementation of the double deep-Q learning method and evaluate
it on the Cartpole environment.

Problem 6 Double deep Q learning

Info: I get the following results:

0 25 50 75 100 125 150 175 200
Episode

0

25

50

75

100

125

150

175

200

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(2x)cartpole_dqn
(2x)cartpole_double_dqn

Once more we see the agent solves the environment but the stability could be im-
proved. The tendency over many simulations is to be slightly better than regular
DQN.

i

4.4 Dueling-Q networks (duel_deepq_agent.py⋆⋆)
Dueling deep-Q is a different way to parameterize the Q-network by separating it into a
value function and the so-called advantage. The Q-function is then defined as [WSH+15]

This method generally converge slightly faster than regular Q-learning.
To implement the method, all we need to do is to adapt the parameterization of the

Q-network. You can find hints here:
Pytorch • https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

EXERCISE 13 3 May, 2024

Adopt ideas from existing solutions to change the network class and implement Du-
eling deep-Q learning

Problem 7 Double deep Q learning

Info: I get the following results:

0 25 50 75 100 125 150 175 200
Episode

0

25

50

75

100

125

150

175

200

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(2x)cartpole_dqn
(2x)cartpole_double_dqn
(4x)cartpole_duel_dqn

These results are on average less stable than DQN and double-DQN (but perhaps
with a slightly quicker learning). My suspicion is that the networks are too deep for
this simple task.

i

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. The MIT Press, second edition, 2018. (Freely available online).
[WSH+15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,

and Nando De Freitas. Dueling network architectures for deep reinforce-
ment learning. arXiv preprint arXiv:1511.06581, 2015.

	Theoretical problem: Baselines
	Dyna-Q (dyna_q.py)
	Tabular double-Q learning (tabular_double_q.py)
	Maximization-bias example (maximization_bias_environment.py)

	Deep Q learning
	Implementation details
	The replay buffer
	The deep network
	Scheduling of learning and exploration rate
	Other details

	Classical deep Q learning with replay buffer (deepq_agent.py)
	Double-Q learning (double_deepq_agent.py)
	Dueling-Q networks (duel_deepq_agent.py)

