
EXERCISE 1
The finite-horizon decision problem

Tue Herlau
tuhe@dtu.dk

2 February, 2024

Objective: In this exercise, we will familiarize ourselves with the finite-horizon decision
problem, with an emphasis on how it is practically implemented using an agent and an
environment. These will be the two recurring building-blocks in the rest of the exercises.
(43 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex01.html

Contents
1 Bobs financially challenged friend 1

2 Implementing the Bob-friend environment (bobs_friend.py) 2

3 Inventory control environment (inventory_environment.py) 3

4 Pacman and a simple agent (pacman_hardcoded.py) 4

5 The chess tournament (chess.py)// 5

1 Bobs financially challenged friend

☞ Bob has x0 = 20 kroner. He can either:

• Action u = 0: Put them in the bank at a 10% interest, thereby ending up with 22
kroner.

• Action u = 1: Lend them to a friend.

– With probability 1
4
he looses everything

– With probability 3
4
his friend gives him 12 kroner (aka one beer) as a thank

you, and thus he will have 20 + 12 = 32 kroner total.

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 1 2 February, 2024

We can consider this as a decision problem starting in the state x0 and where Bob takes
a single action.

(a.) Which action u is the better when Bob starts out with x0 = 20 kroner?

(b.) Determine the policy µ0(x0) which maximize Bobs earnings

(c.) (Bonus ethics questions: Who is the worse friend)

2 Implementing the Bob-friend environment (bobs_friend.py)

☞Part A: The Bob-friend-environment Implement the Bob-friend decision problem de-
scribed in section 1 above as an environment. To get you started, I have written the
init-method:

1 # bobs_friend.py
2 class BobFriendEnvironment(gymnasium.Env):
3 def __init__(self, x0=20):
4 self.x0 = x0
5 self.action_space = Discrete(2) # Possible actions {0, 1}

As you can see, the init-method stores the initial amount of money Bob has (i.e., the
first state x0), and the reward the environment should return under the two actions is
the change to Bobs monetary amount. I.e., when u = 0 and x0 = 20 the reward should
be r = 22− x0 = 2.

Implement reset and step -functions in the environment class. Note that the envi-
ronment should work for any initial amount x0 .

Problem 1 Bobs friend

When you are done, you can run the tests to check your work. Since you have not
solved all problems, you can expect some tests to work and some to fail. Those that will
work should be labeled according to the problem, BobsFriendTest , and the sub-question,
meaning those startingwith test_a_ shouldwork. See 02465material.pages.compute.dtu.dk/02465public/exercises/ex01.html
for more information.

Part B: Bobs choice In this problem, we will implement two agents: One that always
take action u0 = 0, and one that always take action u0 = 1. To implement the agents,
you only need to change the policy function (i.e., self.pi in the code).

https://
https://

EXERCISE 1 2 February, 2024

• Complete the two agents AlwaysAction_u0 and AlwaysAction_u1 . Their policies
should be very simple.

• The rest of the code simulate them for a large number of episodes and compute
the average reward. Explain why you get these numbers using your calculations
in section 1

• Run the rest of the tests associated with Bob. They should all work if your
implementation is correct.

Problem 2 Bobs policy

Once implemented, read through the code to see how we train them for a large
number of episodes and compute the average reward. Does this conform to

3 Inventory control environment (inventory_environment.py)
This example will illustrate the various parts of the world-loop in greater details. Note
most of the code you have to write is already given in the slides/lecture notes (See
[Her24, section 4.4.2]).

Implement the missing code for the inventory environment and the RandomAgent
(code for the environment can be found in [Her24, section 4.4.2] and the follow-
ing sections). The random agent should return one of the possible actions selected
at random. Review the output and compare against the description in the notes.

Problem 3 Inventory environment

Info: The first part of the problem should work and produce the output:

1 Accumulated reward of first episode -6
2 [RandomAgent class] Average cost of random policy J_pi_random(0)= 4.344
3 [Agent class] Average cost of random policy J_pi_random(0)= 4.293

If you are stuck on how to select a random action (i.e., a random number) you
can perhaps use the np.random.choice -function, or action_space.sample() (see the
online documentation).

i

Although this example illustrates what this course will consider the proper way to
interact with an environment (i.e, by using the train function), I think it is worth to
re-produce the result without using api calls. We will therefore implement our own
simplified training function:

EXERCISE 1 2 February, 2024

Figure 1: A simple pacman maze

Implement the missing functionality for the simplified training function. The func-
tion computes a single rollout of the agent’s policy and return the total reward of the
rollout.

Problem 4 Do-it-yourself training function

Info: The estimate based on your simplified training function should match that of
the real training function: The first part of the problem should work and produce the
output:

1 [simplified train] Average cost of random policy J_pi_random(0) = 4.291

If you are stuck, note that the missing code can be found in the lecture notes.

i

4 Pacman and a simple agent (pacman_hardcoded.py)
In this problem, we will program an agent (pacman) that eats all the dots in the small
maze shown in fig. 1. The agent you write should implement a single method, the policy
pi(x,k,info) , which should return the action to take in state x at time step k . Remem-
ber that info can be ignored.

The code contains hints in the comments, including how you can figure out what the
available actions are. I recommend inserting a breakpoint in the code and trying to work
out the actions using the command line. You can see more information on how to work
with breakpoints in the videos online.

EXERCISE 1 2 February, 2024

Implement the missing policy function using the hints in the code. Verify pacman
eat all the food pellets by looking at the visualization. I recommend looking at the
example carefully before moving on – this course will contain a lot of code similar
to this.

Problem 5 Deterministic pacman

Info:

• You should not write a general pacman-solver. Just make it work for this prob-
lem.

• You can verify the solution to this (and many of the other exercises) by running
the test script found in the irlc/tests directory.

i

5 The chess tournament (chess.py) //
This problem is inspired by the following youtube video: https://www.youtube.com/
watch?v=5UQU1oBpAic. The problem goes as follows:

• You are playing a chess match against a skilled opponent. For a given game, there
is a 75% chance the game will end in a draw

• Of the games that do not end in a draw, there is a 2/3 chance you will win, and a
1/3 chance you will lose.

• The first player to win 2 games in a row is declared the winner of the chess match.
What is the probability you will win the match?

The video describes how the problem can be solved using basic probability theory, how-
ever we will do something much more fun and solve the problem by converting it to an
Environment and then use the course software.

The chance of winning the match can be written as:

µ = E[h(x)] =
∑
x

p(x)h(x)

(see [Her24, section X.1]) where x corresponds to a chess match (i.e., a list of outcomes
of the various games), for instance

x = (0,−1, 1, 0, 0, 1, 1)

corresponds to a draw, a loss, a win, two losses and two wins.
In this case, h should be a function which takes a chess match and determines who

won. Although it is difficult to specify p(x) because thematches can have different games,

https://www.youtube.com/watch?v=5UQU1oBpAic
https://www.youtube.com/watch?v=5UQU1oBpAic

EXERCISE 1 2 February, 2024

we can quite easily simulate from p and thereby approximate, using the Monte-Carlo
estimate:

µ̂ ≈ 1

T

T∑
i=1

h(xi)

where xi is a random chess match generated one game at a time as described in the
problem.

To implement this, we will consider the chess-match as an environment, where the
state is a list of the form of x above, and in each step of the environment the outcome of
a random game is generated (according to the description) and added to the end of x.
The environment then checks if the match is over and return a reward of 1 if the player
won and otherwise zero. If we use this procedure the average reward, computed over
many episodes, will correspond to the average win rate.

Implement the chessmatch environment according to the above description. What
should the reset function do?. Note that the action will not be used.

As a bonus, we will also compute the average game length.

Problem 6 Chess match

Info: The output should be approximately:

1 Agent: Estimated chance I won the tournament: 0.7918
2 Agent: Average tournament length 32.6978

i

References
[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.

	Bobs financially challenged friend
	Implementing the Bob-friend environment (bobs_friend.py)
	Inventory control environment (inventory_environment.py)
	Pacman and a simple agent (pacman_hardcoded.py)
	The chess tournament (chess.py) '057'057

