
EXERCISE 2
Dynamical Programming

Tue Herlau
tuhe@dtu.dk

9 February, 2024

Objective: The goal of this exercise is to introduce the dynamical programming (DP)
algorithm in its most general form (backward-dp). To practically implement it, we need
to introduce a model-class to represent the various terms in the DP problem such as fk
and gk. (38 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex02.html

Contents
1 Conceptual question: A windy walk on the line 1

2 Deterministic environments and graphs (graph_traversal.py) 2

3 Implementing deterministic DP (dp.py) 4

4 Implementing stochastic DP (inventory.py) 5

5 Exam question: Counting states 6

6 The DP agent (dp_agent.py) 6

7 Exam question: The flower-store (flower_store.py)// 7

1 Conceptual question: A windy walk on the line

☞ Consider a simple game where the agent can walk right and left on a line, but is some-
times blown one step by wind.

We formally define this as consisting of states Sk = Z = {. . . ,−2,−1, 0, 1, 2, . . . } and
in each state take an actions Ak(xk) = {−1, 1} (i.e., move right or left). When the agent
takes an action, what happens is that our simulation of the environment generates m
random numbers:

v1, . . . , vm ∈ {0, 1}

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 2 9 February, 2024

(generated i.i.d. with probability 0.5). Suppose we let

wk = v1 + v2 + · · ·+ vm

and the update rule is then simply

xk+1 = fk(xk, uk, wk) = xk + uk + wk

For instance, if m = 2 and we go right uk = 1, but the wind blow us as v1 = 0 and v2 = 1
the next state is:

xk+1 = xk + 1 + (0 + 1) = xk + 2.

(a.) Assume that m = 1. Determine PW (wk|xk, uk)

(b.) Assume that m = 2. Determine PW (wk|xk, uk)

(c.) Assume that m = 1, and that we select

xk+1 = fk(xk, uk, w
′
k) = w′

k.

Determine a suitable choice for the noise distribution PW (w′
k|xk, uk) so that this new

model is in fact equivalent to the one considered in the two first questions. (Hint: As the
notation indicate, you need to re-define what values w′

k can take).
The last formulation, i.e. setting fk(xk, uk, wk) = wk and letting pW do all the work,
is in fact how we will end up addressing the Pacman problem in project 1.

2 Deterministic environments and graphs (graph_traversal.py)

☞Our first problem will examine the dynamical programming model in the context of
graphs. Consider the graph problem in [Her24, fig. 4.4] (reproduced in fig. 1) where the
goal is to go from a node x0 to a destination node t. A weighted graph can be represented
as a collection of edges, which are naturally stored in a dictionary where the keys are
edges and the values are their weights. In the example:

1 # graph_traversal.py
2 G222 = {(1, 2): 6, (1, 3): 5, (1, 4): 2, (1, 5): 2,
3 (2, 3): .5, (2, 4): 5, (2, 5): 7,
4 (3, 4): 1, (3, 5): 5, (4, 5): 3}

I.e. the weight between vertex i and j is G222[(i,j)] 1.
Traversing a graph can be thought of as a decision problem where the agent start in

the starting node x0 and each traversed edge is a decision. The cost in each step is then
the cost of an edge.

We will implement this problem using the DPModel class which in this course is used
to represent all decision problems (see the online documentation).

For generality, we have given their signature in the following abstract class which
all instance of the basic dynamical programming problem inherits from (the code can

1If dictionaries are unfamiliar, I greatly recommend reading [Her24, chapter 2].

EXERCISE 2 9 February, 2024

be found in dp_model.py). The functions in this class should implement the functions
fk(xk, uk, wk), gk(xk, uk, wk) so they correspond to a concrete problem:

1 # dp_model.py
2 class DPModel:
3 def __init__(self, N):
4 self.N = N # Store the planning horizon.
5

6 def f(self, x, u, w, k: int):
7 raise NotImplementedError("Return f_k(x,u,w)")
8

9 def g(self, x, u, w, k: int) -> float:
10 raise NotImplementedError("Return g_k(x,u,w)")
11

12 def gN(self, x) -> float:
13 raise NotImplementedError("Return g_N(x)")
14

15 def S(self, k: int):
16 raise NotImplementedError("Return state space as set S_k = {x_1, x_2, ...}")
17

18 def A(self, x, k: int):
19 raise NotImplementedError("Return action space as set A(x_k) = {u_1, u_2,

...}")↪→

20

21 def Pw(self, x, u, k: int):
22 # Compute and return the random noise disturbances here.
23 # As an example:
24 return {'w_dummy': 1/3, 42: 2/3} # P(w_k="w_dummy") = 1/3, P(w_k =42)=2/3.

to implement the graph environment, we will inherit this class and implement the
specific transition/cost functions we need for our problem.

The graph transversal problem is transformed into a basic decision problem using the
recipe given in [Her24, section 5.1.1].

• States are vertices 1 , 2 , ...

• Actions are vertices that you can be traversed by an edge: 1 , 2 ,

• The cost is the weight as defined in the dictionary.

• Since the goal is to reach a certain terminal state the terminal cost is infinite if we
do not reach it, otherwise it is 0.

So what about the noise disturbances def pW ? Since the environment is deterministic,
we can simply ignore them as they will not affect the dynamics: Just keep the code for
this function as it is.

EXERCISE 2 9 February, 2024

Figure 1: Figure reproduced from the lecture notes

Implement the missing functions in the SmallGraphDP class. You will not have to
implement def S or def Pw as we will not need them for this exercise.

Problem 1 Deterministic graph traversal

3 Implementing deterministic DP (dp.py)

The main goal today is to implement the dynamical programming algorithm. The im-
plementation will be applied to the shortest path problem we also considered in the last
exercise, and which is further detailed in [Her24, section 6.2.1].

The graph we will apply DP to is given in fig. 1. It is in this case so simple we can
easily track the states of the agent. Since you already implemented the DP model last
week, all we need to do this week is to implement the DP algorithm; furthermore, since
the problem is deterministic, it is possible to ignore the noise terms w. This means that
in the DP algorithm [Her24, algorithm 1] line 9–12 can be simplified to:

Qu = gk(xk, uk, 0) + Jk+1(fk(xk, uk, 0))

Implement the DP algorithm as described in [Her24, algorithm 1], using comments
in the exercise and in the pseudo code. I recommend that you first implement the
version described in [Her24, section 6.2.1] where the above simplification is applied
to line 9–12.

Verify the first steps of the solution agrees with the expected output; if one of the
cost function terms Jk(x) differ, you have a mistake!

Problem 2 Deterministic DP

EXERCISE 2 9 February, 2024

Info: Since the DP algorithm starts at k = N and proceeds backwards you should
focus on the first k where the output differs from the expected output in [Her24, sec-
tion 6.2.1]. Carefully follow the standard debugging recipe of using breakpoints/step-
ping the code to find the first time a quantity is updated wrongly, then figure out why
it is updated wrongly, and fix the problem. When done, you should obtain the fol-
lowing output:

1 J_0(1) = 2.0, J_0(2) = 4.5, J_0(3) = 4.0, J_0(4) = 3.0, J_0(5) = 0.0
2 J_1(1) = 2.0, J_1(2) = 4.5, J_1(3) = 4.0, J_1(4) = 3.0, J_1(5) = 0.0
3 J_2(1) = 2.0, J_2(2) = 5.5, J_2(3) = 4.0, J_2(4) = 3.0, J_2(5) = 0.0
4 J_3(1) = 2.0, J_3(2) = 7.0, J_3(3) = 5.0, J_3(4) = 3.0, J_3(5) = 0.0
5 J_4(1) = inf, J_4(2) = inf, J_4(3) = inf, J_4(4) = inf, J_4(5) = 0.0
6 Cost of shortest path when starting in node 2 is: J[0][2]=4.5 (and should be 4.5)

Any differences means you have a bad implementation and the following exercises
will fail.

i

4 Implementing stochastic DP (inventory.py)

Once done, we can increase the complexity slightly by including the noise distribution
(obviously, you might have implemented this already, but now we will test it). Recall we
represent the noise distribution as a dictionary: {..., w:pw, ...} . The implementation
should be quite similar to the above, except it should include an extra loop to account
for the average over the noise parameters, see [Her24, algorithm 1]. If you are having
problems debugging the code, consult [Her24, section 6.2.3] for a detailed example of
the intermediate states of the algorithm.

• First complete the function pW in inventory.py . The functions should return
the random noise disturbances and their probabilities as a dictionary (see the
online documentation).

• Next, ensure your DP algorithm implementation in dp.py includes the loop
over noise terms. When done, run the code and inspect the output to get a
sense of how it represents the optimal policy and value function.

Problem 3 Stochastic DP

EXERCISE 2 9 February, 2024

Info: The code should produce the following output

1 Inventory control optimal policy/value functions
2 J_0(x_0=0) = 3.70, J_0(x_0=1) = 2.70, J_0(x_0=2) = 2.82
3 J_1(x_1=0) = 2.50, J_1(x_1=1) = 1.50, J_1(x_1=2) = 1.68
4 J_2(x_2=0) = 1.30, J_2(x_2=1) = 0.30, J_2(x_2=2) = 1.10
5 pi_0(x_0=0) = 1, pi_0(x_0=1) = 0, pi_0(x_0=2) = 0
6 pi_1(x_1=0) = 1, pi_1(x_1=1) = 0, pi_1(x_1=2) = 0
7 pi_2(x_2=0) = 1, pi_2(x_2=1) = 0, pi_2(x_2=2) = 0

i

5 Exam question: Counting states
Suppose the Dynamical Programming algorithm is applied to a problem where the fol-
lowing is known:

• N = 10

• The size of the action spaces are |Ak(xk)| = 4

• The size of the states spaces are |S0| = 1, |SN | = 2 and otherwise |Sk| = 10

• There are exactly two random noise disturbances, w = 0 and w = 1, available in
any state/action combination:

PW (w = 0|x, u) = PW (w = 1|xk, uk) =
1

2
.

How many times does the dynamical programming algorithm need to evaluate fk in
order to find the optimal policy?

a. 736

b. 744

c. 730

d. 728

e. Don’t know.

6 The DP agent (dp_agent.py)
We are now ready to build the first serious agent, namely an agent which plan using the
DP algorithm. In other words, we need both an environment, and a DP model that corre-
sponds to that environment. The agent should then plan using the dp model to obtain an

EXERCISE 2 9 February, 2024

optimal policy π∗ = {µ∗
k}N−1

k=0 , and then in step k use policy function µ∗
k. Since the Inven-

tory control problem is the only one where we both have a model and an environment
it will provide a good testbed. Once done, the interaction will look as follows:

1 # dp_agent.py
2 env = InventoryEnvironment(N=3)
3 inventory_model = InventoryDPModel(N=3)
4 agent = DynamicalProgrammingAgent(env, model=inventory_model)
5 stats, _ = train(env, agent, num_episodes=5000)

Implement the missing functionality from the DP agent. Once done, verify the (sam-
ple estimate) of the optimal value function agrees with the (exact) DP result.

Problem 4 Dynamical Programming Agent

Info: You should expect the following output:

1 Estimated reward using trained policy and MC rollouts -3.7102
2 Reward as computed using DP -3.6999999999999997

i

Having to specify both an agent and an environment, when it is quite apparent we can
derive the environment from the agent, is obviously not ideal. Subsequent exercises will
fix this problem.

7 Examquestion: The flower-store (flower_store.py)//

This problem focuses on a variant of the inventory control problem discussed in [Her24,
section 5.1.2]. This inventory problem represents a flower-store such that xk denotes the
number of flower bouquets in stock at planning round k. The original inventory control
model and the dynamical programming algorithm is included in the exam folder.

The following tasks can be solved by implementing suitable variants of the inventory
control problem, and then applying dynamical programming to determine the optimal
policy µ∗

0(x0) and cost-function J∗(x0) in the starting state.
The flower store problem is equivalent to the inventory control problem on a horizon

of N with two changes:2:

• gk(xk, uk, wk) = cu+ |xk + uk − wk|
2The expression |x| return the absolute value, i.e. |4| = | − 4| = 4

EXERCISE 2 9 February, 2024

• The distribution of the number of items customers buy wk is:

pW (wk = 0|xk, uk) = 0.1, pW (wk = 1|xk, uk) = 0.3, pW (wk = 2|xk, uk) = 0.6.

(a.) Complete def a_get_policy(N: int, c: float, x0 : int) : This function is given a value
of N , c and a starting state x0, and should return the action the optimal policy computes
in x0, i.e. µ∗

0(x0), as an int .
(b.) Complete def b_prob_one(N : int, x0 : int) : For every policy and starting state x0,
there is a certain chance p(xN = 1|x0)we will end up with a single item (bouquet) on the
last dayN when following the policy. The clerk operating the store would very much like
to bring this last bouquet home with her, and so she is solely concerned with determining
the policy which maximize p(xN = 1|x0), i.e. the chance she can bring home a single
bouquet at the end of the planning period.
Determine what this chance is when we follow the policy which is solely concerned with
with maximizing the chance that xN = 1. The function should accept N and x0 as input
argument, and return the value of p(xN = 1|x0) as a float .
Hint: Alter the cost-functions so that the optimal solution maximize this probability. The
Pacman-problem where the winning probability is computed may provide inspiration.

References
[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.

	Conceptual question: A windy walk on the line
	Deterministic environments and graphs (graph_traversal.py)
	Implementing deterministic DP (dp.py)
	Implementing stochastic DP (inventory.py)
	Exam question: Counting states
	The DP agent (dp_agent.py)
	Exam question: The flower-store (flower_store.py) '057'057

