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Direct methods and control by optimization
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Objective: In this exercise, we will look at optimization-based methods for optimal con-
trol, specifically direct collocation. Direct collocation works by transforming the control
problem into a single, large, non-linear constrained optimization problem which is then
solved by a black-box solver. (33 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex05.html
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1 Applying direct methods to the Kuromoto problem

☞Note: An earlier version of this problem had a misprint affecting problems c, d,
and e. The problem has been amended and simplified slightly. I am sorry for the
inconvenience. We will once again consider the Kuromoto oscillator problem. Assume
that x(t) ∈ R and u(t) ∈ R are one-dimensional. The Kuramoto oscillator is defined by
the following differential equation:

ẋ = f(x, u) = u+ cos(x). (1)
We will assume that the cost function is:

{cost} =

∫ tF

0

((
2x(t)− π

2

)2

+
π2

4

[
2u(t) + 2 cos(x(t)) + 1

]2)
dt

We assume that the system is subject to the constraint that t0 = 0, tF ≤ 10 and x(t0) = 0,
x(tF ) =

π
2
.

In the following, we apply Trapezoid collocation to this problem using N = 3. Hint:
This means that the time between two time points is hk =

tF−t0
2

.
(a.) What are the dimensions of the vectors z, zlb and zub?
(b.) Define the relevant quantities. I.e., using the definitions of the Kuromoto problem,
what are:

z = · · · , zlb = · · · , zub = · · ·

(c.) Show that there are two collocation constraints and they are equivalent to:

x1 =
tF
4
(u1 + cos(x1) + u0 + 1) (2)

π

2
− x1 =

tF
4
(u1 + cos(x1) + u2) (3)

(d.) Assuming that u0 = u2 = 0, show that the discretized cost function is:

E(u1, u2, u3) =
c0 + c2

2
+ c1 (4)

c0 =
tF
2
(
π2

4
+ 9

π2

4
) =

5π2tF
4

(5)

c2 =
tF
2
(
π2

4
+

π2

4
) =

π2tF
4

(6)

c1 =
tF
2

[
(2x1 −

π

2
)2 +

π2

4
(2u1 + 2 cosx1 + 1)2

]
(7)

(e.) (Challenge!) Assume that u0 = u2 = 0. In other words, the only free variables are
x1, u1, tF and the cost function can be simplified.
Under these assumptions, solve the constrained collocation optimization problem to de-
termine the final time tF . Do this by writing the cost function as only a function of tF by
using the constraints, then minimize this function to find tF .1

1Hint: This problem may seem daunting, but the cost has been chosen to simplify the exercise, and
you will not need math outside ordinary highschool math. It may be useful to first solve for t2F
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2 Direct methods and trapezoid collocation
In this section, we will implement the trapezoid collocation method as described in
[Her24, section 15.3], specifically [Her24, algorithm 20]. Alternatively, the reference
[Kel17] provides an excellent (and more in depth) description of the same material.

This will amount to transforming (transcribing) the continuous-time problem (in
terms of the dynamics f and cost functions cF and c as well as bounds) into a large
optimization problem, which will be solved by an optimizer.

2.1 Constrained optimization
The best way to get an idea of how this should proceed is to look at the code we have
for solving a big constrained minimization task. You can find an example below, and a
more in-depth discussion in the online documentation:

1 # sample.py
2 ineq_cons = {'type': 'ineq',
3 'fun': lambda x: np.array([1 - x[0] - 2 * x[1],
4 1 - x[0] ** 2 - x[1],
5 1 - x[0] ** 2 + x[1]]),
6 'jac': lambda x: np.array([[-1.0, -2.0],
7 [-2 * x[0], -1.0],
8 [-2 * x[0], 1.0]])}
9 eq_cons = {'type': 'eq',

10 'fun': lambda x: np.array([2 * x[0] + x[1] - 1]),
11 'jac': lambda x: np.array([2.0, 1.0])}
12 from scipy.optimize import Bounds
13 z_lb, z_ub = [0, -0.5], [1.0, 2.0]
14 bounds = Bounds(z_lb, z_ub) # Bounds(z_low, z_up)
15 z0 = np.array([0.5, 0])
16 res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,
17 constraints=[eq_cons, ineq_cons], bounds=bounds)

The code uses the minimize function to minimize the (python) function J_fun (corre-
sponding to an optimization problem J(z) subject to both equality and inequality con-
straints. The constraints will come in two forms: Simple constraints

zL ≤ z ≤ zU

and complex, functional constraints of the form h(z) = 0 and equality constraints. The
simple constraints simply corresponds to two lists ( z_lb and z_ub ), whereas the com-
plex constraints are implemented using dictionaries. Specifically what scipy wants is:

• The objective function J_fun

• An initial point z0 (which should satisfy the constraints)
• jac refers to the Jacobian. I.e. this should be a functionwhich returns the gradient

of the objective with respect to all variables
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• bounds is an instance of the Bounds , and represent simple upper/lower bounds on
z. In other words, we have to specify simple bounds from the complex ones

2.2 Overview
We will need to compute a lot of Jacobians. That is why we use the symbolic toolbox:
We will simply specify symbolic expressions we need to use, and then let sympy turn
these expressions into regular python functions and their Jacobians.

• First we will compute a python list of all symbolic variables corresponding to z
(whichwewill simply call z ); as well as lists of numbers corresponding to z_lb, z_ub, z0
above.

• Recall that the order of the variables in z is described in the lectures. In other
words, the last entry in z, z[-1] will correspond to tF .

• The main part of the program will therefore be concerned with creating lists of
(symbolic) expressions corresponding to the inequality and equality constraints, as
well as optimizer objective J , which should be a single symbolic expressions which
uses only the variables in z . This correspond exactly to the procedure outlined in
the slides and notes, and the variables will have similar names.

• The program then computes derivatives of all these symbolic expressions to ob-
tain the various Jacobians of the objectives and so on. It also packs the code into
dictionary objects matching ineq_cons above so we can pass it into the minimize-
function

• The scipy optimizer is called and it returns a result datastructure res . The optimal
z can be accessed as z_star = res.x . This can then be used to construct functions
x(t) and control inputs u(t) by interpolating as in the slides/notes.

The whole thing is called iteratively on a finer and finer grid (i.e. higher N). That is, we
first call the method with a crude guess and a low value of N , then the result (the last
step) is used as a new guess, and we iteratively call the function with increasing values
of N . This is required since the optimization problem is too hard to solve in one step.

2.3 Creating the simple bounds (direct.py)
First, we will compute the list of all symbolic variables, z (or z in the code), the simple
upper/lower bounds on z, and also the initial guess for z ( z0 ).

The value of the bounds can be obtained using themethods defined in the ControlModel ,
i.e. model.x_bound() gives the bounds for x.

Implement the list corresponding to z, the initial guess z0, and the upper and lower
bounds zlb and zub. Carefully check the output, both to ensure you have the right order,
and to make sure you understand which variables are bounded or not in our notation.

Problem 1 Variables and simple bounds
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Info: When done, you should get the following output:

1 z=[x_0_0, x_0_1, u_0_0, x_1_0, x_1_1, u_1_0, x_2_0, x_2_1, u_2_0, x_3_0, x_3_1,
u_3_0, x_4_0, x_4_1, u_4_0, t0, tF]↪→

2 z0=[3.1, 0.0, 0.0, 2.4, 0.0, 0.0, 1.6, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.0]↪→

3 z_lb=[3.0999999046325684, 0.0, -inf, -6.300000190734863, -inf, -inf,
-6.300000190734863, -inf, -inf, -6.300000190734863, -inf, -inf, 0.0, 0.0,
-inf, 0.0, 0.5]

↪→

↪→

4 z_ub=[3.0999999046325684, 0.0, inf, 6.300000190734863, inf, inf,
6.300000190734863, inf, inf, 6.300000190734863, inf, inf, 0.0, 0.0, inf, 0.0,
4.0]

↪→

↪→

i

2.4 Symbolic collocation (direct.py)

Next, you must create all equality and inequality constraints in the problem, as well
as computing the cost function as a symbolic expression. The code contains details,
but crucially you must add code which computes the trapezoid collocation constraint as
in [Her24, eq. (15.20)] (see [Her24, algorithm 20])

Note that the Mayer and Lagrange terms in the cost function are implemented in the
symbolic environment as cost.sym_cf and cost.sym_c . You do not need to bother with
how these are implemented in details2.

Implement the symbolic expressions for cost function and all constraint for trapezoid
collocation. I.e. the lists of symbolic variables Ieq and the symbolic variable J .

Problem 2 Collocation and constraints

2The implementation is similar to how the dynamics were treated
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Info: When done, you should get the following output:

1 Ieq=[-x_0_0 + x_1_0 - (-0.125*t0 + 0.125*tF)*(x_0_1 + x_1_1), -x_0_1 + x_1_1 -
(-0.125*t0 + 0.125*tF)*(1.25*u_0_0 + 1.25*u_1_0 + 9.82*sin(x_0_0) +
9.82*sin(x_1_0)), -x_1_0 + x_2_0 - (-0.125*t0 + 0.125*tF)*(x_1_1 + x_2_1),
-x_1_1 + x_2_1 - (-0.125*t0 + 0.125*tF)*(1.25*u_1_0 + 1.25*u_2_0 +
9.82*sin(x_1_0) + 9.82*sin(x_2_0)), -x_2_0 + x_3_0 - (-0.125*t0 +
0.125*tF)*(x_2_1 + x_3_1), -x_2_1 + x_3_1 - (-0.125*t0 +
0.125*tF)*(1.25*u_2_0 + 1.25*u_3_0 + 9.82*sin(x_2_0) + 9.82*sin(x_3_0)),
-x_3_0 + x_4_0 - (-0.125*t0 + 0.125*tF)*(x_3_1 + x_4_1), -x_3_1 + x_4_1 -
(-0.125*t0 + 0.125*tF)*(1.25*u_3_0 + 1.25*u_4_0 + 9.82*sin(x_3_0) +
9.82*sin(x_4_0))]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

2 Iineq=[]
3 J=(-0.125*t0 + 0.125*tF)*(0.5*u_0_0**2 + 0.5*u_1_0**2 + 0.5*x_0_0**2 +

0.5*x_0_1**2 + 0.5*x_1_0**2 + 0.5*x_1_1**2) + (-0.125*t0 +
0.125*tF)*(0.5*u_1_0**2 + 0.5*u_2_0**2 + 0.5*x_1_0**2 + 0.5*x_1_1**2 +
0.5*x_2_0**2 + 0.5*x_2_1**2) + (-0.125*t0 + 0.125*tF)*(0.5*u_2_0**2 +
0.5*u_3_0**2 + 0.5*x_2_0**2 + 0.5*x_2_1**2 + 0.5*x_3_0**2 + 0.5*x_3_1**2) +
(-0.125*t0 + 0.125*tF)*(0.5*u_3_0**2 + 0.5*u_4_0**2 + 0.5*x_3_0**2 +
0.5*x_3_1**2 + 0.5*x_4_0**2 + 0.5*x_4_1**2)

↪→

↪→

↪→

↪→

↪→

↪→

i

2.5 Computing the derivatives (direct.py)

The SLQP optimizer is greatly helped if it is passed the derivative of the objective and
of the constraints. Since these are symbolic variables it is reasonably easy to implement,
but you might want to look around in the code for inspiration.

Add code to compute the gradient of the objective ∇J(z) as a numpy function. This
will be passed on to minimize .

Problem 3 Gradients

Once this is completed, the trapezoid collocation procedure is completed and we can
call minimize! Assuming all checks turned out well, you now have a solution expressed
as an (optimal) value of z.

2.6 Trapezoidal interpolation (direct.py)

Now that we have the optimal value of z, we need to unpack it to obtain the solutions
paths as described in [Her24, section 15.3.3].
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Implement the interpolation rule that takes the solution z, extract the relevant vari-
ables, and re-construct the predicted trajectory x(t) from this information using the
method in [Her24, section 15.3.3].

Problem 4 Interpolation

Info: When done, you should get the followin g output:

1 [[ 3.14159274e+00 1.84310455e+00 3.54438028e-01 6.99947725e-08]
2 [ 0.00000000e+00 -2.84705443e+00 -9.97919763e-01 -3.08682250e-07]]

as well as the figure shown next

i

2.7 Output
The output of running the above code will be the following figure:
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Coordinates

It shows how well the solution of the path x(t) found by the direct method you just
implemented matches the solution obtained by taking the control signal you found from
the solver, u(t), and simulating it in the real system using the RK4 scheme. We see the
solution actually works: it brings the pendulum to the right place. However, the mesh is
so coarse the quality of the solution is not great. Try to increase N = 20 to see how that
solves the problem.

2.8 Iteratively calling the method (direct_pendulum.py )
We need one last component before we have have a complete implementation: Iteration.
Non-linear optimization will in general be very dependent on initialization. This goes for
neural networks, but even more so for constrained optimizers as considered here. The
way we will accomplish this is to first run the direct optimizer on a very coarse grid, for
instance N = 10, giving an approximate solution xN=10(t),uN=10(t). Then we use that



EXERCISE 5 1 March, 2024

solution to initialize the guess for the next grid. I.e. given a new value of N , for instance
N = 30, we compute grid-points t0, . . . , tN=40, and initialize a guess as

xguess(tk) = xN=10(tk). (8)

Code-wise this is easy to do. The guess is supplied to the collocation method already,
and therefore all you need to do is to set the guess (at a given iteration k > 0 of the
method) equal to the solution at iteration k − 1.

Update the code so that, when called iteratively, the guess is initialized based on the
output from the previous iteration. The code can then solve the pendulum swingup
task.

Problem 5 Guess and iteration

Info: The output will both show the defects, actions and states. The states forN = 10
are:

0.0 0.5 1.0 1.5 2.0 2.5
Time/seconds

0

1

2

3 Direct state prediction x(t)
RK4 exact simulation

0.0 0.5 1.0 1.5 2.0 2.5
Time/seconds
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0

2

d dt

which can be seen to be a fairly poor solution. For N = 60 they become:
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Direct state prediction x(t)
RK4 exact simulation
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d dt

which is sufficient to solve the task.

i

3 A direct-solver agent (direct_agent.py)
Direct optimization is perhaps the method which is the least well-suited for the agent-
environment interface we use in this course, however, we can certainly still build an
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agent which plan using a direct solver and then executes the actions, and thereby allow
us to re-use the visualization and plotting methods we already know. The example for
doing so will build on the pendulum-problem section 2.8 and should return the same
solution. Note we need to turn the continuous model into an environment, and we do
so using the standard methods we discussed last week.

Implement the agent code. the missing functionality is code which saves the ac-
tion trajectory u(t) from the solution, and code which then call the action trajectory
whenever the agent needs to execute the policy. The result is not perfect. Can ´you
explain why?

Problem 6 Agent code

Info: The output will show the state and actions trajectories, and a small animation
which repeats itself. The result should be identical to the previous problem.
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i

4 Swingup task (direct_cartpole_time.py)
We should now be able to run the cartpole swingup task from [Kel17, Section 6]. The
cartpole swingup task consists of swinging up the cartpole in the minimum amount of
time.

I had problems making the swingup task succeed using the parameters in [Kel17],
but this might be due to us using different dynamics (we are using physically correct dy-
namics in this course). We are therefore going to consider a slightly easier version where
the parameters are taken from https://github.com/MatthewPeterKelly/OptimTraj/

https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
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blob/master/demo/cartPole/MAIN_minTime.m where the cart-movement constraint is
the same as in [Kel17] but the actuator force is now 50N rather than 20N .

The code is already complete, and the task is to run the existing code and discuss
what the input arguments are. This is relevant for project 2, where you have to apply
the direct method for an optimal planning problem.

Investigate and discuss what bounds are applied to the Cartpole problem. Then
discuss how the grid is refined. Try to change the grid-refinement procedure and see
if the solution still works.

Remember the pole is pointing up at an angle of θ = 0 and down at θ = π and
look at https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/
cartPole/MAIN_minTime.m for further details.

Problem 7 Cartpole minimum time swingup task

Info: All the constraints are implemented as inequality constraints. Use print(model)
to see details about a model (see the online documentation). Recall that equality
constraints can be obtained by letting the upper/lower bounds agree.

The script uses gradual grid refinement and this appears necessary for this par-
ticular problem. Note the first solutions will be quite poor. You should check the
constraint violations (defects) are small. The following plots show the trajectory, for
the finest mesh, as well as the action path, however the script will also generate out-
puts for the less-refined action paths which have the same shape but are obviously
quite poor.
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The curves show the direct methods predicted trajectory (i.e. what the optimizer
think will happen) as well as the true trajectory as obtained by RK4 integration (there
are two curves, they just agree!). Other plots, not shown here, will show the defects,
i.e. how much the equality constraints in the collocation are violated. The defects
should be small, otherwise the optimization has failed.

i

https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
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4.1 The Kelly-swingup task (direct_cartpole_kelly.py) /
As an additional example, we will consider the (alternative) cartpole swingup task from
[Kel17] (we denote this the Kelly swingup task in the following). Since the direct solver
should not require any more work, the only challenge is to set up the problem correctly.
To do so, look at the hints in the code as well as [Kel17, section 6] and [Kel17, Appendix
E, table 3]. The task is similar to the one in section 4, except we fix tF = 2 and use a
different cost-function and physical parameters. From a mechanical point of view, the
swingup is much more gentle.

Complete the problem specification in the code. Complete the KellyCartpoleModel
to implement (i) a constraint so that tF = 2 and (ii) A new quadratic cost-function
with matrices Q = 0, R = I. Note the problem appears relatively easier than the
previous one numerically.

Problem 8 Kelly swingup task

Info: Once completed, you will get a slightly different swingup trajectory from be-

fore.
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