
EXERCISE 7
Linearization and iterative LQR

Tue Herlau
tuhe@dtu.dk

15 March, 2024

Objective:
Today’s exercises will continue our exploration of LQR (Linear-quadratic regulator).

We will use this to solve non-linear control tasks in two ways, the first is by simply ex-
panding (linearizing) the system around a single point, the next by iteratively linearizing
around a path (iLQR), and finally full iLQR which applies a line-search strategy. As this
can be quite a mouthful, keep in mind that the main thing to take away from the exercise
is the simple LQR method, and the idea that a non-linear system can be linarized so LQR
can be applied to it. (37 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex07.html

Contents
1 Exam question: Linearization of a simple problem 1

2 Linearly approximating a system using the Jacobian (linearization_agent.py)
2

3 Iterative LQR (ilqr.py)/ 3
3.1 Basic iLQR (ilqr_rendovouz_basic.py) 3
3.2 Linesearch iLQR (ilqr_rendovouz.py)// 4
3.3 Exploring basic and improved linesearch (ilqr_pendulum.py)/ . . . 5

4 An iLQR agent (ilqr_cartpole_agent.py, ilqr_agent.py)/ 6

1 Exam question: Linearization of a simple problem

☞ Consider a control problem where a control signal u(t) ∈ R is applied to control a system
with state x(t) ∈ R, and where the dynamics satisfy the following differential equation:

ẋ = f(x, u) = 4ux (1)

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 7 15 March, 2024

The first two questions will assume the problem has been discretized using a time con-
stant of ∆ = 0.5 to yield states x0, x1, x2, · · · and control signals u0, u1, u2,

(a.) Assume the problem is Euler discretized. Determine the discrete dynamics fk used
to compute xk+1 = fk(xk, uk).

(b.) Continuing the previous problem, suppose we wish to apply a LQR controller to
control the system near a state x̄. The system is therefore linearized around x̄ and ū = 1
to give rise to the linearized dynamics xk+1 = Axk + Buk + d. Determine A , B and
d in terms of x̄.

2 Linearly approximating a system using the Jacobian
(linearization_agent.py)

As discussed in the lectures, a simple idea is to linearly approximate the system and
then solve the linear system using LQR. This corresponds to the first algorithmic idea for
iterative LQR (with constant A, B matrices) discussed in the slides. Please look at the
online documentation for more information on how to compute the Jacobians that are
required for solving this problem.

You will implement [Her24, algorithm 23] and it will be applied to the cartpole task.
The cartpole will be initialized slightly out of balance, similar to the PID cartpole exam-
ple, and our job is to bring it in balance. We make the following assumptions/simplifi-
cations:

• We expand around the upright position x̄, and no action ū = 0.

• We just fix the planning horizon to N = 30

• We only use the first control matrix/vector L0, l0 at all subsequent time steps

The later two points are reasonable since the problem is stationary.

Complete the missing code for the Cartpole system and check it can balance the cart.
You can experiment with the no-control period to create more challenging problems.
Since we use the agent/environment system, the LQR solution is simulated on a
realistic system.

Problem 1 Implement linearization procedure

EXERCISE 7 15 March, 2024

Info: The script should produce the following output, which shows a few of the
coordinates of the simulated solution:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time / seconds

2.0

1.5

1.0

0.5

0.0

0.5

1.0

x
sin()
cos()
Torque u

i

3 Iterative LQR (ilqr.py) /
Note: With the previous exercise, you have everything required for the project. I
think the iterative LQR exercise has some good points (and if you are a little stuck
you can consult the online solution on gitlab), but if you prefer you can also choose
to work on project 2.

The previous idea had the drawback that we linearized around a single point, and
assumed that model was good enough to derive a controller for the entire trajectory.
Obviously, once the trajectory begins to depart from that point, so will the controller,
and the method will not be stable.

3.1 Basic iLQR (ilqr_rendovouz_basic.py)
Iterative LQR attempts to overcome the aforementioned problem by first selecting an
action sequence uk, simulating a rollout xk by applying uk to the system, linearize the
system around (uk, xk) to get matrices Ak, Bk, etc., and then creating an optimal control
sequence for the linearised system by using discrete LQR, pseudo-code is given in [Her24,
algorithm 24].

We will test the procedure on the rendevouz problem, where two vehicles has to fly
towards and meet each other from given initial conditions.

Implement the basic iLQR procedure defined as the function ilqr_basic in ilqr.py ,
i.e. make the script ilqr_rendovouz_basic.py run.

Problem 2 Implement linearizion procedure

EXERCISE 7 15 March, 2024

Info: Once completed, the paths of the vehicles should look as so:

0 2 4 6 8 10 12

2

0

2

4

6

8

10

Trajectory of the two omnidirectional vehicles
Vehicle 1
Vehicle 2

We also compute the cost function along the paths. Your results may differ very
slightly due to initialization, but should be similar to:

1 0> J=1.57068e+06, change in cost since last iteration 0
2 1> J=12294.9, change in cost since last iteration -1.55838e+06
3 2> J=12294.2, change in cost since last iteration -0.779608
4 3> J=12294.2, change in cost since last iteration -0.000169729
5 4> J=12294.2, change in cost since last iteration -5.24324e-08
6 5> J=12294.2, change in cost since last iteration -1.09139e-11
7 6> J=12294.2, change in cost since last iteration -5.45697e-12
8 7> J=12294.2, change in cost since last iteration 0
9 8> J=12294.2, change in cost since last iteration 1.27329e-11

10 9> J=12294.2, change in cost since last iteration 0

i

3.2 Linesearch iLQR (ilqr_rendovouz.py) //
Basic iLQR fails for most problems because the optimization problem is difficult and the
linearizion procedure is only good in a small region around the expansion point. These
problems can be somewhat overcome using linesearch, where we decrease the controller
updates if they fail to find an improved solution (i.e., if the controller generates a higher
cost, we search for policies with paths closer to the expansion point). This is done using
a linesearch procedure exactly as discussed in [TET12], but with a single modification
as documented in the source. We will test the procedure on the rendevouz environment
where you should obtain identical outcomes.

Implement the complete iLQR procedure in ilqr.py and ensure the script ilqr_rendovouz.py
runs.

Problem 3 Implement linearizion procedure

EXERCISE 7 15 March, 2024

Info: As basic iLQR could solve the problem, we do not expect iLQR with linesearch
will provide an improved solution; just ensure you get the same results as the basic
scripts and you should be all set.

i

3.3 Exploring basic and improved linesearch (ilqr_pendulum.py) /

To test whether linesearch offers an improvement on the basic iLQR we will try the
method on a more challenging problem, the inverted pendulum. The task is to swing
up a pendulum which is originally hanging downwards. We will run the script in both
settings and verify your implementation.

Complete the script and test iLQRwith linesearch on the inverted pendulum problem.
Make sure it can swing up the pendulum. Set render = True in the code to see a
small movie of what the controller does on the discretized environment. You can
also experiment with the cartpole environment. Discuss what is shown in the plots.

Discuss in the group whether this prove we can solve the pendulum-environment
in this setup.

Problem 4 Linesearch with the pendulum task

EXERCISE 7 15 March, 2024

Info: The script runs both with and without linesearch, and in this case there should
be a very noticeable difference. Without linesearch we get the following cost-to-go
and phaseplot

0 25 50 75 100 125 150 175 200
Iteration

0

2000

4000

6000

8000

To
ta

l c
os

t

Total cost-to-go (not using linesearch)

4 3 2 1 0
 (rad)

2

1

0

1

2

3

4

5

d
/d

t (
ra

d/
s)

Phase Plot (not using linesearch)

This is obviously nonsense, and just shows the method has failed to converge to
the up-right position. With linesearch things looks smoother:

0 20 40 60 80 100 120 140
Iteration

500

1000

1500

2000

2500

3000

3500

To
ta

l c
os

t

Total cost-to-go (using linesearch)

0 1 2 3 4 5 6
 (rad)

6

4

2

0

2

4

6

d
/d

t (
ra

d/
s)

Phase Plot (using linesearch)

i

4 An iLQR agent (ilqr_cartpole_agent.py, ilqr_agent.py)
/

The big issue with the previous assignment is that we only visualized the iLQR predic-
tions, and not the outcome of an actual simulation. We will fix this using an iLQR agent,
which simply returns actions based on the output of the iLQR method. Note there are
two methods for generating output actions: Either simply return ūk, or use [Her24,
eq. (17.17)], and the script will implement both ideas and show a small animation. The
computed trajectory is illustrated below:

EXERCISE 7 15 March, 2024

Complete the implementation of the iLQR agent and check the outcome when ap-
plied to the cartpole problem. Themethod appears able to solve it in a stablemanner.

Problem 5 iLQR and the cartpole task

Info: The outcome of the script is shown below, using both ways to compute the
action.

0.0 0.2 0.4 0.6 0.8
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s(

)

Cartpole environment T = 50
Closed-loop
Open-loop uk

iLQR rediction xk

i

References
[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.
[TET12] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of

complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4906–4913.
IEEE, 2012. (See tassa2012.pdf).

	Exam question: Linearization of a simple problem
	Linearly approximating a system using the Jacobian (linearization_agent.py)
	Iterative LQR (ilqr.py) '057
	Basic iLQR (ilqr_rendovouz_basic.py)
	Linesearch iLQR (ilqr_rendovouz.py) '057'057
	Exploring basic and improved linesearch (ilqr_pendulum.py) '057

	An iLQR agent (ilqr_cartpole_agent.py, ilqr_agent.py) '057

