
02465 Project: Part 1

Tue Herlau
tuhe@dtu.dk

August 22, 2024

Formalities
• The deadline for this report is Thursday 29th February, 2024 before 23:59.

• Submission of reports happen on DTU learn

• You can work in groups of 1, 2 or 3 students (but not 4)

• You can work in groups of 1, 2 or 3 students (but not 4)

• Collaboration policy: It is not allowed to collaborate with other groups on this
project, except for discussing the text of the project with teachers and students
enrolled on the course this semester. It is not allowed to communicate (or make
available) solutions or parts of solutions to the project to other people. It is not
allowed to use solutions from previous years, or solutions found on the internet or
elsewhere.

• You can use code from the exercises when you solve the project, for instance the
dynamical programming algorithm. The exercises may be solved with help from
teachers or fellow students. However, you are not allowed to copy or share exercise
code directly between groups or make solutions publicly available. This is to ensure
there is no accidental copying of projects.

• Your overall evaluation will be based on your written answers and your unitgrade
score. They will be weighted based on an assessment of the required work.

Preparing the hand-in:
Hand in these three files (please do not hand in a .zip file as this confuses DTU learn):

A .tex file with your written answers: Prepared this by modifying the template in
irlc/project1/Latex/02465project1_handin.tex . Simply write your answers where
it says YOUR SOLUTION HERE. I recommend keeping the layout as it is.

A .pdf file corresponding to this .tex file

A .token file containing your python-solutions: Generate this file by running the script
irlc/project1/project1_grade.py . It is very important you do not modify this file.

1

EXERCISE February 29th, 2024

Contribution table
DTUs exam rules require that each students contribution to the report is clearly specified.
Therefore, for each element in the report, specify which student was responsible for it in
the table in the template. A report must contain this documentation to be accepted.
The responsibility assignment must be individualized. This means:

• For reports made by 3 students: Each section must have a student who is 40% or
more responsible.

• For reports made by 2 students: Each section must have a student who is 60% or
more responsible.

This is an external requirement. Ask me if you have any questions.

Code hand-in:
• Please keep the structure of the irlc -folder. All of your code which is specific to

this report should be in the irlc/project1/ directory. Solutions which use code
outside the irlc folder cannot be verified and therefore cannot be evaluated. You
can (of course) call, re-use or re-purpose any exercise code, including my solutions.

• If you wish to use additional third-party libraries please discuss them with me first
to ensure you are on the right track.

• Breaking or tampering with the unitgrade framework, for instance by reporting a
false number of points or making your solution unverifiable, is potentially cheating.
Code build by reverse engineering specific tests and simply returning the values
which makes them pass will not get credit and may also need to be treated as
a cheating-attempt. Code which is obfuscated to the point of being unreadable
cannot be evaluated.

• That asides, this is not a programming course: Strange, long, undocumented, or
downright disturbing solutions will be evaluated simply based on whether they
work or not.

1 The kiosk (kiosk.py)
In this problem, you take the role of a blaster salesman on the desert planet of Tatoine.
You sell blasters to Jawas and Tusken Raiders and, as we will see, this is a surprisingly
well-regulated line of work with some unique challenges.

Your job in this problem is to determine how many blasters to buy each day in order
to maximize your expected profit. Let’s first establish the basic rules:

• You can have 0, 1, 2, . . . , ns blasters in the kiosk.

• You can order 0, 1, 2, . . . , no blasters to restock your inventory

• The cost of ordering a single blaster is 1.5 credits

EXERCISE February 29th, 2024

• The sale price of a blaster is 2.1 credits

• You will plan on a horizon of N = 14 days

Running a kiosk resembles the inventory-control problem which we saw in [Her24,
section 5.1.2]. Each day, starting in day k = 0, it goes as follows:

• Very early in the morning you have an initial inventory stock x0

• Based on this, you submit an order of a given number of blasters u0 to the orbital
merchant ship

• The number of blasters you ordered are delivered before your shop opens

• Customers buy a number w0 of blasters during the day

• Based on the initial inventory, the number of ordered blasters, and the number
of purchases you obtain a daily reward, g0(x0, u0, w0), and a final inventory x1 =
f0(x0, u0, w0)

• The process is repeated with k = 1, 2, ...

As an example, suppose over the full N = 14-day period you sell a total of 6 blasters and
buy 5. The total (accumulated) profit will then be

6× {sale price} − 5× {ordering price} = 6× 2.1− 5× 1.5.

How you should plan will depend on your assumptions. These are going to change from
problem to problem as we take more effects of local life into account: We start from a
simple model, and then make it more realistic. Therefore, although the problems can be
solved independently, I recommend solving the simple problems first and modifying the
solutions.

EXERCISE February 29th, 2024

To get started, we make the following assumptions:

• The empire does not allow you to store more than ns = 20 blasters overnight
for safety reasons. In other words, suppose in the morning you have x = 15
blasters, you order an additional 10, and you sell a total of 3. Then in the
evening you will have 15+10-3 = 22 blasters, and you have to discard two
blasters so the inventory the following morning will be x′ = 20.

• Discarding blasters does not cost anything

• Your cost-function is solely determined by your profit; the more profit, the bet-
ter

• you can order up to no = 15 blasters at a time

In addition to this, suppose that Tusken raiders always buy blasters 3 at a time.
Therefore, the chance there is a demand of 0 blasters in a day is 30%, 3 blasters in a
day is 60% and 6 blasters in a single day is 10%; all other demands can be ruled out
(the demand otherwise work as for the inventory environment: if you have 2 blasters
and the demand is 6, you will sell 2 blasters). Given this information, formulate the
blaster-business as standard decision problem below. Your formulation must be self-
contained, i.e. include all parts necessary for solving it:

Problem 1 A basic blaster-business

Answer:
YOUR SOLUTION HERE To get you started:

N = 14 (1)
for k = 0, . . . , N : Sk = . . . (2)

for k = 0, . . . , N − 1: Ak(xk) = . . . (3)
... (4)

A

Now that we have gotten this far, complete the functions warmup_states() and warmup_actions()
which should return S0 andA(x0) respectively. SinceA(x0) is independent of x0, you
can ignore the x0-value.

Problem 2 Warmup

EXERCISE February 29th, 2024

Info:

• These should be around one line each – just return the state and action spaces
as sets

• Read the description of the problem above (or look at the previous exercise)

• Look at the inventory-control environment for inspiration

i

Consider the expected optimal cost-to-go just before the last action is taken, JN−1(xN−1).
Suppose xN−1 corresponds to a completely full inventory. Calculate the value of
JN−1(20) below and explain your calculation.

Problem 3 Manually computing JN−1

Answer:
YOUR SOLUTION HERE

JN−1(20) = ...

A

Info:

• Beware of the signs ±!

i

Implement the function solve_kiosk_1() which returns the optimal value function
and policy in the usual format. That is:

• Value functions are a list-of-dictionaries such that J[k][10] is Jk(x = 10)

• Policies are a list-of-dictionaries such that pi[k][10] is µk(x = 10) (i.e. the
number of blasters to buy if the inventory is x = 10 blasters in planning round
k)

Problem 4 Compute optimal policy and value function

EXERCISE February 29th, 2024

Info:

• The recommended way to solve this problem is by using the DP algorithm just
like the inventory-control environment. You can call the code you used in the
exercises.

• If you take this approach, you should implement a DP-model corresponding to
the problem

• The format of J and pi discussed above is compatible with the output of the
DP algorithm

• Check your results using unitgrade

i

As it turns out, the previous plan was way to to naive and failed to take two important
factors into account

• The demand for blasters actually resemble a binomial distribution. The chance
that w = 0, . . . , ns blasters are bought in a given day is

p(w) =

(
ns

w

)
pw(1− p)ns−w.

Where ns is the storage space. Using historical data you determine that p = 1
5
.

• When you dispose of excess blasters (i.e., blasters that you are not allowed to
store over night) you have to obey the pesky imperial environmental protection
act regarding safe handling of dedlanite and bla bla bla. Anyway, it costs 3
credits to dispose of a single excess blaster.

Implement these rules in solve_kiosk_2() and check how it affects your profits.

Problem 5 Kiosk2

Info:

• You probably need to change two functions

• scipy.stats has a build-in binomial distribution function. Alternatively, just
implement the function yourself using the above equation.

• Manually check if you compute the binomial probabilities correctly; this is an
easy way to avoid one potential source of problems

• Check your results using unitgrade

i

EXERCISE February 29th, 2024

0.0 2.5 5.0 7.5 10.0 12.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Kiosk1

0.0 2.5 5.0 7.5 10.0 12.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Kiosk2

Figure 1: Plot of policies for the two first questions (kiosk1 and kiosk2)

EXERCISE February 29th, 2024

1.1 Explaining policies
If you implemented the previousmethods correctly the policies will be plotted (see fig. 1).
The format of the figures will not be explained here – you have to look at the code and
figure it out. As you can tell from the figure, the changes between kiosk1 and kiosk2
caused a change in the overall behavior of the policy. Your job is to explain this change.

Explain what the policies do according to fig. 1. The first Blaster-policy tries to do
something quite natural considering the problem, what is it? How does the behavior
of the policy differ on the first day compared to the last day?

Visually, the second policy looks different from the first. In your words, what does
the change reflect in terms of how the second policy behave?

Problem 6 Explaining the policy

Answer:
The first policy... this can be explained by noting ... YOUR SOLUTION HERE

A

Info:

• You don’t have to give a mathematical argument.

i

The two policies differ as to how many blasters should be bought on day N − 1 (i.e.,
the last day where a decision is made) assuming the inventory is empty. Provide a
mathematical argument to show how many blasters the first policy prefers to buy on
the last day given the inventory is empty, i.e. compute µN−1(0) manually.

Problem 7 Policy explanation continued

Answer:

µN−1(0) = ...

YOUR SOLUTION HERE

A

Info:

• Remember, this is what you code does right now; it just does not tell you the
intermediate calculations.

i

EXERCISE February 29th, 2024

2 Avoid the droid (pacman.py)

R2D2, who in this problem bears a remarkable resemblance to pacman, must first find
the data-discs with the plans for the death-star (these are illustrated as small dots) while
avoiding the blue patrol ghost-droids. Since this is rather important, R2D2 must deter-
mine the absolutely optimal plan which we will do using dynamical programming.

Your job is to help R2D2 by carrying out a sequence of increasingly difficult tasks
culminating in the full solution. It is recommended that you make sure each task is
completed correctly before you progress to the next one (use the unitgrade test-scripts).
The first tasks are easier, since R2D2 does not have to account for the patrol-droids and
just has to find the optimal way to pick up data-discs.

2.1 Getting set up

Maps are specified as strings (see fig. 2) such as

1 # pacman.py
2

3 east = """
4 %%%%%%%%
5 % P .%
6 %%%%%%%% """

The maps are loaded using an openai gym environment. The environments reset()
method can then be used to get a state corresponding to this map configuration:

1 # pacman_demo1.py
2 # Instantiate the map 'east' and get a GameState instance:
3 env = PacmanEnvironment(layout_str=east, render_mode='human')
4 x, info = env.reset() # x is a irlc.pacman.gamestate.GameState object. See the

online documentation for more examples.↪→

5 print("Start configuration of board:")
6 print(x)
7 env.close() # If you use render_mode = 'human', I recommend you use env.close()

at the end of the code to free up graphics resources.↪→

8 # The GameState object `x` has a handful of useful functions. The important ones
are:↪→

9 # x.A() # Action space
10 # x.f(action) # State resulting in taking action 'action' in state 'x'
11 # x.players() # Number of agents on board (at least 1)
12 # x.player() # Whose turn it is (player = 0 is us)
13 # x.is_won() # True if we have won
14 # x.is_lost() # True if we have lost
15 # You can check if two GameState objects x1 and x2 are the same by simply doing

x1 == x2.↪→

EXERCISE February 29th, 2024

Figure 2: The corridor-map

The state x is a bit special as it is actually an instance of a GameState object, which
means that it contains a number of useful functions to get the available actions and so
on. These functions, which are shown in the comment above, are all you need to use to
complete this project. The above output also shows one of the things we can do with the
GameState , namely print the game state corresponding to the GameState :

1 Start configuration of board:
2 %%%%%%%%
3 % < .%
4 %%%%%%%%
5 Score: 0
6

The rest of the code also shows how you can render the GameState in a nicer way as
shown in fig. 2, and in pacman_demo2.py you can play the game yourself.

The first question will help familiarize ourselves with the Gamestate by simply walk-
ing east to get to the datadisc.

Help R2D2 get to the datadisc by completing the function go_east . The function
should take a map (a string) as an input, and return a list of GameState objects corre-
sponding to the path to the datadisc, starting in the initial configuration of the map.
The last GameState in the list should correspond to the winning configuration.

You should assume the map has the form of an east-bound corridor (as in fig. 2),
but of arbitrary length – R2D2 can therefore solve the problem by just going east
until victory.

Problem 8 Go east

EXERCISE February 29th, 2024

Info:

• This is supposed to be an easy question. Don’t get too creative, just go east!

• Check out the code in pacman_demo1.py to see how to instantiate the gamestate
x . After you have instantiated x , experiment with it in the console interpreter

• Use the action-space function x.A() to figure out what the east-action is

• Use the next-state function x.f(action) to move

• Use print(x) whenever you are confused about what x is

• Put all the x ’s in a list and return it

• Make sure the function works for arbitrary-length corridors (but still, you only
have to consider the east-bound direction)

• Use the unitgrade test script to debug your code. Remember you can re-run
individual tests to limit the junk-output.

i

In [Her24, chapter 4] you were introduced to some technical terms to describe both
a controller and an environment. (i) Try to use the terminology to describe (i.e.,
classify) the go-east environment and the controller (agent). What is ’horizon’? How
would you describe the type of action/state space?. (ii) Next, can the environment
be solved by an open-loop controller? Justify your answer.

Problem 9 Describe the go-east problem

Answer:
The environment is an example of a
The controller is an example of a ... YOUR SOLUTION HERE

A

Info:

• Only consider the simple version of the problem, and not the full pacman-
problem we will consider later.

i

2.2 No droid planning
To apply dynamical programming, wemust first determine theN+1 state-spaces S0, . . . ,SN .
This question will break this problem into smaller tasks which, once complete, will make
applying DP trivial. This also means the task formulation may seem a little counter-
intuitive at first.

EXERCISE February 29th, 2024

First, R2D2must know the consequences of a single action. Do this by completing the
p_next(x,u) function, which takes a GameState and an action as input, and return a
dictionary which has the next possible states you can transition into when you take
action u) as keys, and the probability of this transition as the value.

Problem 10 Predict consequence of actions

Info:

• The problem is deterministic. There is a single outcome. What is the probability
of something happening with certainty?

• Your solution will likely just be a single, short line

i

We can now construct the state-spaces S0, . . . ,SN . This will be done using a single
function, which should therefore return a list of lists of states1, such that the k’th element
is Sk, which corresponds to the states R2D2 can reach in exactly k moves starting from
the initial state

Complete the function get_future_states(x, N) , which return a list of length N + 1
such that the k’th element correspond to Sk (the states R2D2 can reach in k steps
starting from x .

Problem 11 Possible future states

Info:

• I recommend using p_next when solving this problem

• The first set S0 is just the singleton list [x0]

• Consider how you would make S1 given S0

• You don’t have to account for ghost-droids yet: Everything is deterministic

• The function should return a list of lists of GameState objects

• Avoid duplicated states in the same state space. I added a test for this situation.

• Check your solution using unitgrade

i

1 [[a,b,c,..], [x,y,z,...], ...]

EXERCISE February 29th, 2024

Figure 3: The state-counting map

You now have all the ingredients to find the datadiscs in the least amount of time. Do
this by completing the function shortest_path(map_layout, N) . It should return two
values (i) a list of optimal actions (ii) the list of states R2D2 will thereby traverse.
Doing this, R2D2 should be able to find the optimal path in the no-ghost map shown
in fig. 4.

Problem 12 Shortest path

Info:

• Solve the problem with regular (backward) DP

• To do so, build a DP-problem class corresponding to the problem

• The function in the DP problem class should be very short. Use the two func-
tions you have just defined.

• Determine an appropriate cost-function, i.e. one that assigns a higher cost the
longer it takes to win.

• First check the optimal cost agrees with what it should be, then focus on the
optimal action/state sequences

• There is a problem from the first week which is relevant for showing how to
simulate a policy and obtain the states/actions from a starting state.

• Check your solution using unitgrade

i

2.3 One ghost-droid problems
In this problem R2D2 has to account for one ghost-droid (see map in fig. 4). We have
to account for the randomness in the problem using the wk-disturbance terms in the DP

EXERCISE February 29th, 2024

Figure 4: Example map with no ghosts (datadiscs), one ghost (SS1tiny) and two ghosts
(SS2tiny)

problem. To this end, remember that a ghost-droid selects between the available actions
with uniform probability.

Update the p_next(x,u) function to account for a single ghost-droid. The input it
still an action, and the output is a dictionary where the keys are the states obtained
after: (i) one deterministic move by Pacman and (ii) one random move of the ghost,
and the values are their corresponding probability.

Problem 13 Predict consequence of actions with one ghost

Info:

• Remember probabilities should sum to 1. Check this is the case as a sanity-
check

• Since a ghost (usually) have three available actions, the dictionary will (usually)
have three elements.

• Usually, not always. Figure out why and make sure you take it into account.

• If you have troubles figuring out how to choose wk, look at the exercises and
lecture notes for inspiration

• Check the output of the function manually and make sure it looks okay

• The code should be a natural extension of the code you have already written;
i.e. the previous exercise should keep working, and the changes will properly
be fairly minimal

• Remember the move of the ghost is made in the game state that arises after
pacman has made his move. Use the functions mentioned in the pacman_demo.py
file.

• Check your solution using Unitgrade

i

EXERCISE February 29th, 2024

Next, we will compute the state-spaces S0, . . . ,SN when there is one ghost-droid

Update the function get_future_states(x, N) , which return a list of length N + 1
such that the k’th element correspond to Sk (the states R2D2 can reach in k steps
starting from x , i.e. when it is R2D2’s turn to move).

Problem 14 Possible future states with one ghost

Info:

• The code should be a small update to your existing function assuming you used
p_next . In fact, the code you have already written may in fact work

• If not, consider how you can use p_next to solve this problem

• Check your solution using unitgrade

i

You now have all the ingredients to find the datadisc, while avoiding being caught
by the ghost. To implement this, we assume that the reward is gN(xN) = −1 if the
terminal state xN is a won configuration and gN(xN) = 0 if it is lost, and that at other
time steps gk(xk, uk, wk) = 0. In other words, the function you implement should just
return the probability of winning within N steps; how soon it happens within the N
steps is irrelevant.

Problem 15 Optimal one-ghost planning

Info:

• Solve this using a new DP model, nearly identical to the old one, and using
backward-DP

• We are not adding a living-cost since we are only interested in the chance of
success, not how long time it takes.

• I recommend you only compute each state-space once and store the result.
They do not change, and your implementation can become very slow if you
re-compute them many times.

• Check your solution using Unitgrade

i

EXERCISE February 29th, 2024

2.4 Any-ghost planning
We are finally ready to tackle an arbitrary number of ghosts and still plan completely
optimally. The most difficult part of this task is the following:

Update the p_next(x,u) function to account for any number of ghost-droids. I.e, in
the case of two ghost-droids, the function is given a state and action, and returns a
dictionary where the keys are the states obtained after (i) one deterministic move by
pacman (ii) one (random) move by the first ghost and (iii) another random move by
the second ghost, and the values are the probability of the resulting state.

Problem 16 Predict consequence of actions with several ghosts

Info:

• Focus on understanding what happens when e.g. x is the starting configura-
tion and u is a specific action (such as going east). What can the ghosts do?
You can list all possible states and count their probability, and then check the
result with your code.

• Remember probabilities should sum to 1. Although not required, I recommend
checking if this is the case automatically as a sanity-check to see if you are on
the right track. I suspect most bugs will be found in this way.

• The ghosts take turns to move: First account for what the first ghost does (and
which states that can lead to), then what the second ghost does (and what
states that lead to)

• For each ghost, you still have to loop over all actions it can take

• P (A,B) = P (A)P (B) for independent events. The ghost-movements are in-
dependent; so to compute the probability two ghost-moves, you must multiple
their individual probability.

• Errors are probably due to either not updating probabilities correctly (again,
check that they sum to 1), or that you are not accounting for certain moves the
ghosts can make. Use the ghosts action spaces to get all available moves for the
ghosts.

• Although the difference between 2 and 5 ghost implementation is not actually
that big, your code will only be tested with 0, 1 or 2 ghosts.

• Check your solution using Unitgrade.

i

Next, verify you compute your state spaces correctly:

EXERCISE February 29th, 2024

Update get_future_states(x, N) to work for any number of ghosts.

Problem 17 Future states

Info:

• If you used p_next in your implementation, it is very likely your implementa-
tion just works

• Check your solution using Unitgrade

i

If you pass all tests in unitgrade, it is time to move on to the final test: R2D2 should
now be able to steal the plans for the death-star and evade the ghost-droids using opti-
mally planning over N steps.

Solve the missing optimal-planning problems for two ghost-droids to compute the
chance R2D2s mission will succeed.

Problem 18 Optimal planning

Info:

• Use same cost function as before

• Very likely, no additional code is necessary. If you find yourself writing a lot of
code, you may be on the wrong track

i

References
[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.

	The kiosk (kiosk.py)
	Explaining policies

	Avoid the droid (pacman.py)
	Getting set up
	No droid planning
	One ghost-droid problems
	Any-ghost planning

