
02465 Project: Part 3

Tue Herlau
tuhe@dtu.dk

August 22, 2024

Formalities
• The deadline for this report is Thursday 2nd May, 2024 before 23:59.

• Submission of reports happen on DTU learn

• You can work in groups of 1, 2 or 3 students (but not 4)

• You can work in groups of 1, 2 or 3 students (but not 4)

• Collaboration policy: It is not allowed to collaborate with other groups on this
project, except for discussing the text of the project with teachers and students
enrolled on the course this semester. It is not allowed to communicate (or make
available) solutions or parts of solutions to the project to other people. It is not
allowed to use solutions from previous years, or solutions found on the internet or
elsewhere.

• You can use code from the exercises when you solve the project, for instance the
dynamical programming algorithm. The exercises may be solved with help from
teachers or fellow students. However, you are not allowed to copy or share exercise
code directly between groups or make solutions publicly available. This is to ensure
there is no accidental copying of projects.

• Your overall evaluation will be based on your written answers and your unitgrade
score. They will be weighted based on an assessment of the required work.

Preparing the hand-in:
Hand in these three files (please do not hand in a .zip file as this confuses DTU learn):

A .tex file with your written answers: Prepared this by modifying the template in
irlc/project3/Latex/02465project3_handin.tex . Simply write your answers where
it says YOUR SOLUTION HERE. I recommend keeping the layout as it is.

A .pdf file corresponding to this .tex file

A .token file containing your python-solutions: Generate this file by running the script
irlc/project3/project3_grade.py . It is very important you do not modify this file.

1



EXERCISE May 2nd, 2024

Contribution table
DTUs exam rules require that each students contribution to the report is clearly specified.
Therefore, for each element in the report, specify which student was responsible for it in
the table in the template. A report must contain this documentation to be accepted.
The responsibility assignment must be individualized. This means:

• For reports made by 3 students: Each section must have a student who is 40% or
more responsible.

• For reports made by 2 students: Each section must have a student who is 60% or
more responsible.

This is an external requirement. Ask me if you have any questions.

Code hand-in:
• Please keep the structure of the irlc -folder. All of your code which is specific to

this report should be in the irlc/project3/ directory. Solutions which use code
outside the irlc folder cannot be verified and therefore cannot be evaluated. You
can (of course) call, re-use or re-purpose any exercise code, including my solutions.

• If you wish to use additional third-party libraries please discuss them with me first
to ensure you are on the right track.

• Breaking or tampering with the unitgrade framework, for instance by reporting a
false number of points or making your solution unverifiable, is potentially cheating.
Code build by reverse engineering specific tests and simply returning the values
which makes them pass will not get credit and may also need to be treated as
a cheating-attempt. Code which is obfuscated to the point of being unreadable
cannot be evaluated.

• That asides, this is not a programming course: Strange, long, undocumented, or
downright disturbing solutions will be evaluated simply based on whether they
work or not.

1 Jar-Jar at the battle of Naboo (jarjar.py)
In this problem, you have the ungrateful job of ordering Jar-Jar around during the battle
of Naboo. Experience has taught you to keep things simple. You can either order Jar-Jar
one step left one step right, and you want him to simply stay near a particular location
s = 0 1.

Specifically, the states Jar-Jar can be in are all integers:

S = Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

In each turn, you can tell Jar-Jar tomove one step left (a = −1) or right (a = 1). Although
Jar-Jar always does as you tell him, he will not stand still, and so you have to give him

1coincidentally, the landing spot of the trade federations landing vessel



EXERCISE May 2nd, 2024

orders in each turn. If for instance Jar-Jar is in state s = 10, and you tell him to move
left a = −1, he will transition to state s + a = 9, and in the next turn you need to give
him a new order so he transitions to either s = 8 or back to s = 10.

The reward in each step is (minus) the distance to 0, i.e. r = −|s|. In the previous
example, the reward you would obtain would be r = −|10| = −10. The environment
does not terminate.

You are particularly concerned with the γ-discounted return (0 < γ < 1) you will
obtain over time, and you want to be able to predict what it will be for any state s Jar-
Jar may be in. The following exercises will highlight how we can both compute this
approximately and exactly.

As a warm-up, you will implement the optimal policy for ordering Jar-Jar around.
I.e., the policy which minimize the accumulated reward:

Implement the optimal policy function π∗ as the function optimal_pi .

Problem 1 Optimal policy

Info:
No theory required: Simply think about what we want Jar-Jar to do.
Actions are encoded as a = −1 (left) and a = 1 (right)
There are in fact two optimal policies (why?). Either one is acceptable.

i

Next, let’s consider the optimal value function:

Simulate an approximate version of the optimal action-value function Q∗(s, a) in the
state s = 0 and using action a = 1.

To do this, simulate the optimal policy for N steps, starting in s0 = 0, to get
N +1 states s0, s1, . . . , sN and the corresponding N rewards r1, r2, . . . , rN . Use these
to approximate Q∗(0, 1) for an arbitrary discount factor γ. Implement the result as
Q0_approximate .

Problem 2 Simulating a finite approximation of the optimal action-value function

Info:
Think about what Jar-Jar will do under the optimal policy you just defined; it is
something very simple and predictable.
The result should probably involve a loop.

i



EXERCISE May 2nd, 2024

Next, we will analytically compute an expression for the optimal action-value func-
tion when computed on an infinite horizon, i.e. the same as the previous exercise
but for N → ∞. Your job is to derive a simple, closed-form expression for the op-
timal value function. You should derive the result for just two values: Q∗(0, 1) and
Q∗(1,−1).

The phrase simple, closed form expression means it should be expressed without
using the sum-sign Σ.

Problem 3 Analytically computing the optimal action-value function

Answer:
Using that ... we obtain

Q∗(0, 1) = · · · (1)
Q∗(1,−1) = · · · (2)

therefore...

A

Info:

• The two values of (s, a) are not chosen at random: First use the Bellman opti-
mality condition for Q∗(0, 1) to express Q∗(0, 1) in terms of Q∗(1,−1).

• Then use the Bellman optimality condition for Q∗(1,−1) to express Q∗(1,−1)
in terms of Q∗(0, 1).

• This should give you two equations with two unknowns.

• The phrase simple, closed-form expression refers to an expression such asQ∗(0, 1) =
γ3 − 1 or Q∗(0, 1) = 1

γ
eγ (neither of these are the correct solution, obviously).

• You can check your result by selecting a very large value of N in the previous
exercise.

i

Extend the solution above, which works for two combinations of s and a, to get an
exact method for computing Q∗(s, a) for all values of s, a. The method can involve
for-loops or recursions, but should not simply correspond to selecting a large value
of N in problem 2. Implement this as Q_exact .

Problem 4 Extend solution to all states and actions



EXERCISE May 2nd, 2024

Figure 1: Top row: The basic and bridge rebel-locating scenario. Check the
rebels_demo.py file to see how they are plotted and try to play in them yourself. Bot-
tom row: The Q-values as obtained using a Q-learning agent for 3000 episodes (!) and
an UCB-exploration agent for just 300 episodes.

Info:

• You should extend your previous solution. Start by considering Q(2,−1) and
use Bellmans optimality equation to express this in terms of a known Q-value.
Then consider Q(3,−1) and get a good idea

• Similarly, for actions that point in the wrong way, use Bellmans optimality con-
dition to express Q∗(1, 1) in terms of a (now) known quantity

• Since the problem is symmetric around s = 0, the Q∗-functions also obey sym-
metries

• It is fine to use a (finite) for loop or recursion when computing Q(s, 1) in gen-
eral. However, your expression must be exact – i.e. do not use an infinite sum
that you truncate etc.

• If you really want, you can avoid for loops and recursion completely by using
a bit of math to obtain a closed-form expression for Q∗(s, a). However, this is
not required or really that advisable.

• Unitgrade will test values that I consider simple to obtain first, and then more
complicated values.

i



EXERCISE May 2nd, 2024

2 Finding the rebels using UCB-exploration (rebels.py)
Things have been tense after the rebels blew up the boss death-star, and finding them has
become a top priority. This is done using search-droids, who must explore the various
star systems the rebels may be hiding in. Practically, a search droid moves around on a
grid, and gets a positive reward depending on how many rebels it finds, or a negative
reward for flying into a dangerous zone and being destroyed. The problem, therefore,
resembles the standard grid-world problem. You are particularly interested in the two
scenarios show in the top row of fig. 1 (basic and bridge).

The existing exploration-approach (random ϵ-greedy; i.e. what the currentQ-learning
method does) was designed by the same person who made the curriculum at the marks-
manship school for storm troopers, and your job is to see if you can do better – specifically,
you want to use an UCB-inspired strategy.

To elaborate on this, it is useful to first refresh how regular Q-learning uses the reg-
ular ϵ-greedy bandit exploration method (see [SB18, Equation (2.5)]) when making
decisions as explained by [SB18]:

• You have as many bandit-problems as there are states

• The actions for the bandit-problem in state s is A(s)

• When the bandit, in state s, takes an action a ∈ A(s), the bandit-algorithm obtains
a reward:

R̃t = rt+1 + γmax
a′

Q(st+1, a
′). (3)

• The Q-learning agent then learns by updating the Q-values using this reward:

Q(s, a)← Q(s, a) + α(R̃t −Q(s, a))

just as in the regular bandit-learning algorithm [SB18, Equation (2.5)].

• Finally, the bandit in state s implements the ϵ-greedy rule: i.e. select the action
with the highest Q-value with probability 1− ϵ and otherwise a random action in
A(s)

To use UCB for exploration simply modify the above as follows:

• You have as many UCB-bandit-problems as there are states

• The actions for the bandit-problem in state s is A(s)

• When the bandit, in state s, takes an action a ∈ A(s), the UCB-bandit-algorithm
once again obtains a reward of R̃t (see eq. (3)).

• The bandit (specific for state s) is trained and selects actions using the UCB-algorithm
(see [SB18, Eq. (2.10)]) using the reward R̃t.

• In this equation, note thatQt has the samemeaning as before (and should therefore
be updated the same way), but you need to define Nt and t to be specific for this
state. I.e., keep track of how many times we have seen the state t, and how many
times we have played a given action Nt(a) in the state.



EXERCISE May 2nd, 2024

• The UCB-algorithm in [SB18] has the following corner-cases:

– If two actions have the same priority (i.e., same value of the UCB-bound ac-
cording to what is inside the argmaxa in [SB18, Eq. (2.10)], we prefer the
action with the lowest index (i.e. we prefer a = 1 over a = 3 etc.)

– If an actions have not been tried before, so thatN(a) = 0, it has infinitely high
priority and will always be selected. I.e. the method will first try all actions
once in order: a = 0, 1, 2, . . . .

In the first of the two scenarios shown in fig. 1 (basic), the agent can take one of
four actions in the starting state, and from there it must take a single extra action to
(deterministically) transition to the terminal state with the reward shown as the numbers
in the figure. Since there is one relevant state (the starting state), the problem will
closely resemble the standard UCB bandit problem. One slight annoyance is that the
last (dummy) action in an episode have no effect in the gridworld-environment and we
will therefore discard it. You can find an example (see the rebels_demo.py )-file which
illustrates how you can generate actions using an agent and discard the last (dummy)
action:

1 Trajectory 0: States traversed [(1, 1), (1, 2), 'Terminal state'] actions taken [0, 0]
2 Trajectory 1: States traversed [(1, 1), (0, 1), 'Terminal state'] actions taken [3, 0]
3 All actions taken in 16 episodes, excluding the terminal (dummy) action [[0], [3], [0], [0], [0], [1], [0], [0], [0], [0], [0], [0], [0],

[0], [0], [0]]↪→

The file also contains code for visualizations, and how to turn on keyboard-inputs so
you can play with your UCB-agent.

Implement the function get_ucb_actions . The function should accept a gridworld
layout, the parameter α controlling the learning rate in the Q-learning algorithm,
the exploration parameter c (the constant which control exploration in the UCB al-
gorithm), and a number of episodes to simulate. You can assume that γ = 1 in all
experiments.

The function should return a list simply consisting of all actions the agent takes
but excluding the last dummy action. i.e., simply remove the last action in each
episode and concatenate the action-sequences together. Example code for doing
this is included in the rebels_demo.py file. The return value should thus be a list of
integers, and in case of the basic grid, it should have the same length as the number
of episodes.

Problem 5 UCB-based exploration



EXERCISE May 2nd, 2024

Info:

Overall hints:

• The Gridworld-environment does not have the same number of actions avail-
able in each state. In fig. 1 (top, left), the starting state will have |A(s)| = 4
actions, but the exit states (those with an white inner border and a number)
will have |A(s)| = 1 action. We deal with varying action spaces in the manner
prescribed by openai Gym; c.f. the code for the Q-learning agent or the online
documentation for part 3 of the project.

• Since the method will be based on Q-learning, the code for the Q-learning
agent is probably a good place to start. Note in particular the Q-values are
updated the same in the UCB and ϵ-greedy method.

• You can turn the grid layout (a list of lists of strings) into a gym Env using the
methods from the toolbox. See the rebels_demo.py file for more details.

• If you write an agent, you can use the train -function to get a list of trajectories,
and you can simply concatenate them together to get the list of all actions. See
the rebels_demo.py -script for details.

• Note that to implement the UCB-algorithm, you must keep track of how many
times each state has been visited, and howmany times an action has been taken
in that state. In other words, you must keep track of the N -values (see [SB18,
Eq. (2.10)]). Note this data structure closely resemble Q-values.

• Again, if you look at [SB18, Eq. (2.10)], the t-parameter must actually be equal
to: t =

∑
a Nt(a). This can potentially reduce what you need to keep track of.

• Remember that in the basic-environment, with a single state, there is a single
UCB-bandit problem and it will therefore be quite simple to reason about/keep
track of.

Implementation and self-check hints: UCB is a simple algorithm and you can
reason about what the method will do. Two cases are particularly interesting:

• The first four episodes will compute the same action sequence regardless of the
rewards. Figure out why and check your result.

• Actually, the first 8 episodes will always be the same independent of the re-
wards. To explain this, you should consider eq. (3), and that each episode in
the basic-environment consists of two actions and three states.

• From here, you can manually run the UCB algorithm and figure out the actions
taken.

i



EXERCISE May 2nd, 2024

Figure 2: The inside of the great Sarlacc

3 Individual contribution: The great sarlacc (sarlacc.py)

Individual contribution: This is an individual part of the project. This means that
you have to work out a solution yourself without collaborating with your other team
members. To do this, work on the code in the irlc/project3i/ -directory, and create
a .token file as usual using the test-script in this directory. You can upload the
.token to the (individual) assignment on DTU learn.

Oh no, you took a job on a sail barge and next thing you know, someone pushed you
overboard and you are now in the belly of the great Sarlacc. It is said people who fall
into the great Sarlacc are slowly eaten over 1000 years, however, you plan to climb out.
The only question is how long this will take?

Climbing out of a Sarlacc a random process where in each turn, you can take 1, 2,
3, 4, 5 or 6 steps forward (each selected with probability 1

6
as a random roll). Small

Sarlacc worms (illustrated as snakes) make you slide back, and easily-traversible parts
(illustrated as ladders) allows you to climb up quickly. In other words, it resembles
the snakes-and-ladders game, and you draw up the diagram in fig. 2 representing the
location of the snakes and ladders.

We consider the states of the game as integers s. You start in the lower-right corner
(s = 0, indicated by the Zebra the Sarlacc once ate). To win, you need to exactly land on
the winning tile, and excess moves beyond the winning tile makes you move backwards.
Some examples of the game rules:

• If in the first turn you roll a 2, you go to the base of the ladder and transition to
state s = 16

• If in the next turn you roll a 1, you go to state 27

• The game terminates when you land on tile 55. That is, if you are in state 54, roll
a 1, you win



EXERCISE May 2nd, 2024

• Excess moves make you bounce and move backwards. If you are in state 54, roll a
3, you go to state 53, and if you had rolled a 2, you would have stayed in state 54.

We can represent the game rules as a dictionary where each key is a state, and the
value is the state the player is teleported to. We include a special transition to state −1
to correspond to winning (compare the rules dictionary in the code to fig. 2).

Implement the game_rules function. It takes a rules-dictionary, a state and a roll of
the die, and return the next state. Note that the function return −1 when the game
is won.

Problem 6 Sarlacc rules

Info:

• First consider what happens in the starting state. This will be fairly easy. Work
out the result in specific situations and check your function agrees with your
answer

• The states near the goal are slightly harder but not very hard. Consider concrete
examples, for instance the s = 54 and s = 53, and use these to generalize to
the complete solution.

i

To work out the time it will take to escape we consider the game as a Markov Decision
process. We are interested in the time it will take to complete, and therefore we associate
each step (i.e., each of the four examples above) with a reward of 1. Your job is to
compute the expected return given a set of game rules and a discount factor γ; the
expected return when γ = 1 will then correspond to the number of steps until winning.

Compute the value function for the Sarlacc escape-problem. The value function
should work for arbitrary game rules (i.e., dictionaries) and for arbitrary values of
the discount factor γ. It should return a dictionary where the keys are tile numbers
and the values the γ-discounted value function. The dictionary should include s = 0
and all states the player can be in (but not s = −1 as this is a terminal state).

Problem 7 Escape the Sarlacc



EXERCISE May 2nd, 2024

Info:

• What about the actions? You already saw a problem in which the actions had
no effect (the chess problem all the way back in week 1, se chess.py ). How
was that situation handled?

• Unitgrade will check if your dictionary contains the right keys. Make sure this
is the case.

• The problem resembles the Gambler problem from [SB18]. Look at the ap-
proach to this problem to get you started

• The game_rules function will likely be of help.

• Since the problem is a Markov decision process the problem will likely involve
probabilities. It is always a good idea to check the probabilities you compute
sum to 1 using an automatic test.

i

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).


	Jar-Jar at the battle of Naboo (jarjar.py)
	Finding the rebels using UCB-exploration (rebels.py)
	Individual contribution: The great sarlacc (sarlacc.py)

