
02465: Introduction to reinforcement learning and control

The finite-horizon decision problem

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
2 February

2 Dynamical Programming
9 February

3 DP reformulations and introduction to
Control
16 February

Control

4 Discretization and PID control
23 February

5 Direct methods and control by
optimization
1 March

6 Linear-quadratic problems in control
8 March

7 Linearization and iterative LQR
15 March

Reinforcement learning

8 Exploration and Bandits
22 March

9 Policy and value iteration
5 April

10 Monte-carlo methods and TD learning
12 April

11 Model-Free Control with tabular and
linear methods
19 April

12 Eligibility traces and value-function
approximations
26 April

13 Q-learning and deep-Q learning
3 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 1 2 February, 2024

Reading material:
• [Her24, Chapter 4] Introduction

Learning Objectives
• Introduction and key definitions
• Python and object-oriented programming

3 DTU Compute Lecture 1 2 February, 2024

Course practicalities
Course webpage
02465material.pages.compute.dtu.dk/02465public/index.html

4 DTU Compute Lecture 1 2 February, 2024

cweb

Course practicalities
Where and what

DTU Learn Announcements, assignment hand-ins, quizzes
Course homepage Exercises, projects, slides, documentation, installation,

etc. https:
//02465material.pages.compute.dtu.dk/02465public

Off-hours QA Discord. See link on homepage.
• Exercises

• Building B341, IT-019
• Building B341, IT-015
• Building B341, auditorium 21

• Ask project-related question online so that everyone has the same information
(i.e. not in class)

5 DTU Compute Lecture 1 2 February, 2024

Course practicalities
Project work

• Groups of 1, 2 or 3 students
Part 1 Dynamical programming (available now)
Part 2 Control
Part 3 Reinforcement Learning

• The projects are subject to DTUs rules of collaboration/Code of Conduct
• This includes the individual programming.

6 DTU Compute Lecture 1 2 February, 2024

exam1

Course practicalities
Exam

• The 4-hour written exam will contain:
• Multiple-choice questions
• Written-answer questions
• Programming questions

• Test exams will be online later
• Exercises emphasize code-questions as I believe they test more skills
• Your evaluation is an overall assessment based on the written exam and project

work
• The project work is 20%.

7 DTU Compute Lecture 1 2 February, 2024

exam2
Course practicalities
Creating handins

See videos for week 0

• I hope this can help you debug code
• Example usage:

• python -m irlc.project0.fruit_project_grade
• Hand in your code/scores by uploading the .token file

8 DTU Compute Lecture 1 2 February, 2024

exam3

Course practicalities
Quiz 0: answer on DTU Learn

I will try to use quizzes this semester. You can find them under Quizzes on
DTU Learn:
Do you use ChatGPT or a similar conversational AI tools in your
studies?
• Yes
• No

9 DTU Compute Lecture 1 2 February, 2024

quiz1ol
Course practicalities
ChatTutor

• ChatTutor allows you to ask questions to both TAs and an AI (ChatGPT)
• The platform will collect the data you put in (i.e., same as any other webpage!)

• But please ask if you have questions!
• Optional offer:

• Available from next week
• Work in progress – you will have other options if it is too janky :-).

10 DTU Compute Lecture 1 2 February, 2024

What is reinforcement learning and control
Types of machine learning

Supervised learning Learn a function f(xi) 7→ ŷi to minimize a loss
Unsupervised learning Learn a structure to summarize data

11 DTU Compute Lecture 1 2 February, 2024

What is reinforcement learning and control
Sequential decision making

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

Make decisions, one after another, to bring about a desired outcome
• Observe the world
• Take action
• Obtain cost

Minimize total cost
s lecture_01_pacman.py
12 DTU Compute Lecture 1 2 February, 2024

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

• Time is really important (sequential, non-i.i.d data)
• Must optimize behavior of dynamical systems using information that becomes

progressively available as the systems evolve
• Future cost and state of the system will depend on current actions and state

13 DTU Compute Lecture 1 2 February, 2024

What is reinforcement learning and control
Alpha-Go

• Self-learning Go supercomputer
• Defeated world champion Lee Sedol in 2016
• Notable mentions: Atari/Dota/Starcraft II learners
• General approach: Reinforcement learning + Search trees
14 DTU Compute Lecture 1 2 February, 2024

What is reinforcement learning and control
ChatGPT

15 DTU Compute Lecture 1 2 February, 2024

What is reinforcement learning and control
The decision problem

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

State The configuration of the environment x

Action Either discrete or a vector u

Cost/reward A number. Depends on state x and action u

16 DTU Compute Lecture 1 2 February, 2024

Examples
Example: Mars landing

Time Continuous
State/Actions x(t): (Position, velocity, fuel mass)

u(t): thruster outputs
Dynamics Smooth differential equation

ẋ(t) = f(x(t), u(t))

Cost Land the right place
and use little fuel and don’t kill anyone

Constraints Thrusters deliver limited force,
ship cannot go into mars, etc.

Objective Determine u(t) to minimize final cost
Really important constraints; no learning
s lecture_01_car_random.py

17 DTU Compute Lecture 1 2 February, 2024

mars
Examples
Inventory control

• We order a quantity of an item at period k = 0, . . . , N − 1 so as to meet a
stochastic demand

xk stock at the beginning of the kth period,
uk ≥ 0 stock ordered at the beginning of the kth period.
wk ≥ 0 Demand during the k’th period

• Dynamics: xk+1 = xk + uk − wk

• Cost per new unit c; cost to hold xk units is r(xk)

r (xk) + cuk

• Select actions u0, . . . , uN−1 to minimize cost

We want proven optimal rule for ordering

18 DTU Compute Lecture 1 2 February, 2024

inventory

Examples
Example: Atari

States RAM memory state

Observations Pixel-based snapshots H × W × 3

Actions Discrete joystick actions

Dynamics Discrete, stochastic (what the emulator does)

Cost High-score
Don’t know dynamics; must learn from scratch

19 DTU Compute Lecture 1 2 February, 2024

osvg-38
Examples
The environment

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

• Nature can be stochastic or deterministic
• The problem can be continuous-time or discrete-time
• We can know the dynamics or not

20 DTU Compute Lecture 1 2 February, 2024

environ2

Examples
The agent

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

Policy How the robot chooses actions at given times/states

21 DTU Compute Lecture 1 2 February, 2024

agent2
Examples
The interpreter

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

Reward The immediate evaluation of current step
Agents goal Maximize cumulative reward

Reward Hypothesis
Every desired behavior of the agent can be described by the maximization of
expected cumulative reward

22 DTU Compute Lecture 1 2 February, 2024

interpreter

Examples
Making sense of these distinctions

• Why so many things in one course?
• Study-line requirement
• A single problem, and a single solution + tricks
• A better overview (right tool for the job)

• Today, we will look at the problem

23 DTU Compute Lecture 1 2 February, 2024

The basic problem
Basic control setup: Environment dynamics

Finite time Problem starts at time 0 and terminates at time N . Indexed
as k = 0, 1, . . . , N .

State space The states xk belong to the state space Sk

Control The available controls uk belong to the action space Ak(xk),
which may depend on xk

Dynamics
xk+1 = fk (xk, uk, wk) , k = 0, 1, . . . , N − 1

Disturbance/noise A random quantity wk with distribution

wk ∼ Pk(Wk|xk, uk)

24 DTU Compute Lecture 1 2 February, 2024

The basic problem
Cost and control
Agent observe xk, agent choose uk, environment generates wk

Cost At each stage k we obtain cost
gk(xk, uk, wk), k = 0, . . . , N−1 and gN (xk) for k = N .

Action choice Chosen as uk = µk(xk) using a function µk : Sk → Ak(xk)
µk (xk) = {Action to take in state xk in period k}

Policy The collection π = {µ0, µ1, . . . , µN−1}
Rollout of policy Given x0, select uk = µk(xk) to obtain a trajectory

x0, u0, x1, . . . , xN and accumulated cost

Cost-of-rollout = gN (xN) +
N−1∑

k=0
gk (xk, µk (xk) , wk)

Expected return (approximate) Generate T rollouts according to π

Jπ(x0) ≈ 1
T

T∑

i=1
{Cost-of-rollout i}

25 DTU Compute Lecture 1 2 February, 2024

The basic problem
Quiz 1: Discuss and answer on DTU Learn
How do you feel about this argument? Justify your answer:
Decision-making is about determining the appropriate sequence of actions
u0, . . . , uN−1.
Once executed, we get a total cost. Let’s say that on average this is c(u).
Thus, decision-making is ultimately an optimization problem: Find the
sequence that on average minimize the cost:

u0, . . . , uN−1 = arg min
u

c(u).

a. It is computationally too complicated to solve such an optimization
problem
b. It is infeasible to derive or learn the function c(u)
c. Actually nothing is wrong: It is just not a theoretically interesting/fruitful
way to approach decision-making
d. Something else is wrong with the argument
e. Don’t know

26 DTU Compute Lecture 1 2 February, 2024

Programming
Programming: From KID study line evaluation

Hvordan vurderer du dine programmeringsfærdigheder
på nuværende tidspunkt i forhold til, hvad du

havde forventet?

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 44% less than acceptable

Mindre end acceptabelt
Lidt under acceptabelt

Acceptable
Lidt over acceptable

Fremragende
None

JA

Ja

Som nu

Vil du gerne have mere programmering på 1. år?

JA Ja Som nu

27 DTU Compute Lecture 1 2 February, 2024

Programming
Pre-semester quiz

1 # chapter1/lecture1_code.py
2 class MyClass:
3 def __init__(self, a):
4 self.my_variable = a
5
6 def some_function(self):
7 print("The variable I got was", self.my_variable)
8
9 class MyOtherClass(MyClass):

10 def __init__(self, a, b):
11 super().__init__(a)
12 print("I also got", b)

28 DTU Compute Lecture 1 2 February, 2024

dogburn

Programming
Initiatives
What I have done:
• Re-structured the project work
• Simplification of exercises + videos
• Course notes on Python + online documentation
• This lecture
• Changed exam format
• Course responsible for the new mandatory programming course (02002/3)
What I hope you will do:
• Decide to learn this – you can!
• Set aside some time in the first block
• Don’t give up:

• Programming was not taught correctly – 100% valid criticism
• You need to learn new programming techniques through your career

29 DTU Compute Lecture 1 2 February, 2024

Programming
Pacman game loop (without objects)

1 # chapter1/lecture1_code.py
2 walls = np.ndarray() # Initialize a walls-variable
3 food = np.ndarray()
4 pacman_x = 4
5 pacman_y = 6
6
7 for k in range(10):
8 # Use the walls and pacman_x, pacman_y to figure out what actions are available.
9 available_actions = ... # compute using the walls-variable

10 # Do some sort of planning (search?) by using the walls, pacman_x, pacman_y.
11 # select the best possible action
12 # Compute the outcome of the action:
13 pacman_x = pacman_x + action_x
14 pacman_y = pacman_y + action_y
15 # Compute the reward
16 # Let the agent learn based on the outcome and reward

(about 500 lines total)

30 DTU Compute Lecture 1 2 February, 2024

loop1

Programming
Same with two agents and two environments

1 # chapter1/lecture1_code.py
2 for k in range(10):
3 if environment_type == 2:
4 available_actions = ... # compute using the walls-variable
5 else:
6 available_actions = ... # This environment may differ
7 if agent_type == 1: # Agent plan it's actions
8 pass # do planning of first type
9 elif agent_type == 2:

10 pass # do planning of the second type
11 if environment_type == 1: # Compute the outcome of the action:
12 pacman_x = pacman_x + action_x
13 pacman_y = pacman_y + action_y
14 # Compute the cost-function
15 else:
16 pass # Updates relevant for second environment
17 # Compute the cost function
18 if agent_type == 2: # Allow the agent to learn based on cost
19 pass # Learning for the second agent
20 else:
21 pass # Learning method for the first agent

31 DTU Compute Lecture 1 2 February, 2024

loop2
Programming
Using objects

1 # chapter1/lecture1_code.py
2 env = InventoryEnvironment() # Create an instance of the inventory environment
3 agent = RandomAgent(env) # Create an instance of a random-action agent
4 train(env, agent) # Train the agent

Training-function:

1 # chapter1/lecture1_code.py
2 def train(env, agent):
3 s = env.reset() # Reset and get first state, x_0
4 for k in range(10):
5 a = agent.pi(s) # The policy computes the action
6 sp, r, done = env.step(a) # Environment computes next state, reward
7 agent.train(s, a, sp, r, done) # Let the agent train

(this is a very rough sketch. Well get to the real training function soon)

32 DTU Compute Lecture 1 2 February, 2024

loop3

Programming
The simplest class

The smallest and friendliest class

1 >>> class BasicClass: # Classnames are usually upper-case
2 ... pass # `pass` is a special keyword which does nothing
3 ...

Each class instance function like it’s own little box of variables:

1 >>> a = BasicClass() # Create an instance of the class
2 >>> a.name = "My first class" # You can write data to the class like this
3 >>> b = BasicClass() # Another instance. a and b are not related and can store different data:
4 >>> b.name = "Another class"
5 >>>
6 >>> print("Class a:", a.name)
7 Class a: My first class
8 >>> print("Class b:", b.name)
9 Class b: Another class

33 DTU Compute Lecture 1 2 February, 2024

cute1
Programming
A class with a function

1 >>> class BasicDog:
2 ... name = "Unnamed dog" # Each dog-instance will have the property name
3 ... def read_nametag(self):
4 ... # This is a class-function. Note we must pass it `self` as a first argument, which is the
5 ... # instance of the class itself (i.e. the current object). This is how we can access properties of the class
6 ... print("This dog is named", self.name, "please give me treats!")
7 ...
8 >>> dog = BasicDog()
9 >>> dog.name

10 'Unnamed dog'

self refers to the class instance

1 >>> dog.read_nametag() # Invoke the read_nametag() function. Note we don't pass the object to the function!
2 This dog is named Pluto please give me treats!

34 DTU Compute Lecture 1 2 February, 2024

cute2

def __init__ function is called when the class is created

1 >>> class BetterBasicDog:
2 ... def __init__(self, name):
3 ... self.name = name
4 ... self.age = 0
5 ... print(f"The __init__() function has been called with name='{name}'")
6 ... def birthday(self):
7 ... self.age = self.age + 1
8 ... print("Hurray for", self.name, "you are now", self.age, "years old")
9 ...

Arguments can be passed along like this

1 >>> d1 = BetterBasicDog("Pluto") # the __init__ function is now called
2 The __init__() function has been called with name='Pluto'
3 >>> d2 = BetterBasicDog(name="Lassie") # Also support named arguments
4 The __init__() function has been called with name='Lassie'

Functions can change the state of the class

1 >>> d1.birthday()
2 Hurray for Pluto you are now 1 years old
3 >>> d1.birthday()
4 Hurray for Pluto you are now 2 years old

35 DTU Compute Lecture 1 2 February, 2024

Programming
Quiz 2: What is the outcome of this code?

1 >>> class BetterBasicDog:
2 ... def __init__(self, name):
3 ... self.name = name
4 ... self.age = 0
5 ... print(f"The __init__() function has been called with name='{name}'")
6 ... def birthday(self):
7 ... self.age = self.age + 1
8 ... print("Hurray for", self.name, "you are now", self.age, "years old")
9 ...

10 >>> d1 = BetterBasicDog("Pluto")
11 The __init__() function has been called with name='Pluto'

1 # chapter0pythonC/quiz.py
2 d1 = BetterBasicDog("Pluto")
3 d1.birthday()
4 d1.age = 5
5 d1.name = "Lassie"
6 d1.birthday()

a. Ignore changes and prints out "Hurray for Pluto you are now 1 years old"

b. Accept changes and prints out "Hurray for Lassie you are now 6 years old"

c. It gives an error – it is not possible to set the age.
d. It uses name but ignores age , so we get:

"Hurray for Lassie you are now 1 years old"

e. Don’t know.36 DTU Compute Lecture 1 2 February, 2024

Programming
The parrot

1 >>> class Parrot:
2 ... def __init__(self):
3 ... self.words = ["Squack!"]
4 ... def learn(self, word):
5 ... self.words.append(word)
6 ... def speak(self):
7 ... return random.choice(self.words) # Return a random word
8 ... def vocabulary(self):
9 ... return self.words

10 ...

1 >>> parrot = Parrot()
2 >>> words = ["sugar", "sleep well", "(parrot noises)", "*honk*"]
3 >>> for word in words:
4 ... parrot.learn(word)
5 ...
6 >>> for _ in range(3): # Say three words
7 ... parrot.speak()
8 ...
9 'sleep well'

10 'sleep well'
11 '*honk*'
12 >>> print("Vocabulary", parrot.vocabulary())
13 Vocabulary ['Squack!', 'sugar', 'sleep well', '(parrot noises)', '*honk*']

37 DTU Compute Lecture 1 2 February, 2024

Programming
Inheritance

1 >>> class Parrot:
2 ... def __init__(self):
3 ... self.words = ["Squack!"]
4 ... def learn(self, word):
5 ... self.words.append(word)
6 ... def speak(self):
7 ... return random.choice(self.words) # Return a random word
8 ... def vocabulary(self):
9 ... return self.words

10 ...

ForgetfulParrot : Is like the regular Parrot , except the learn-function

1 >>> class ForgetfulParrot(Parrot):
2 ... # The Parot class is used as a template.
3 ... # All functions in the Parot-class are therefore 'imported' as default, including 'self.words'
4 ... def learn(self, word): # This function overwrite the 'actual' learn function in the Parot class
5 ... self.words = [word] # This parrot only know a single word
6 ...

Inheritance: The functions are "copy-pasted" into the ForgetfulParrot

1 >>> old_parrot = ForgetfulParrot()
2 >>> old_parrot.learn("damn remote")
3 >>> old_parrot.learn("Jeopardy")
4 >>> print("Vocabulary", old_parrot.vocabulary())
5 Vocabulary ['Jeopardy']

38 DTU Compute Lecture 1 2 February, 2024

inherit

Programming
Inheritance continued
More inheritance: Make a squeak before and after every word:

1 >>> class Parrot:
2 ... def __init__(self):
3 ... self.words = ["Squack!"]
4 ... def learn(self, word):
5 ... self.words.append(word)
6 ... def speak(self):
7 ... return random.choice(self.words) # Return a random word
8 ... def vocabulary(self):
9 ... return self.words

10 ...

Where is the bug?

1 >>> class BadSqueekyParrot(Parrot):
2 ... def __init__(self, squeek="Quck!"):
3 ... self.squeek = squeek
4 ... def speak(self):
5 ... return f"{self.squeek} {random.choice(self.words)} {self.squeek}"
6 ...
7 >>> squeeky = BadSqueekyParrot(squeek="Kvak-Kvak")
8 >>> squeeky.learn("Good night!")
9 Traceback (most recent call last):

10 File "<console>", line 1, in <module>
11 File "<console>", line 5, in learn
12 AttributeError: 'BadSqueekyParrot' object has no attribute 'words'

39 DTU Compute Lecture 1 2 February, 2024

Programming
Use super() to access functions in the parent class

1 >>> class SqueekyParrot(Parrot):
2 ... def __init__(self, squeek="Quck!"):
3 ... super().__init__() # Call the 'Parot' class __init__ method to set up the words-variable.
4 ... self.squeek = squeek # save the squeek variable
5 ... def speak(self):
6 ... word = super().speak() # Use the speak() function defined in the Parrot class.
7 ... return f"{self.squeek} {word} {self.squeek}"
8 ...
9 >>> squeeky = SqueekyParrot(squeek="Kvak-Kvak")

10 >>> squeeky.learn("Good night!")
11 >>> squeeky.learn("Tell that damn bird to shut it's beak")
12 >>> squeeky.learn("Sugar!")
13 >>> squeeky.speak()
14 "Kvak-Kvak Tell that damn bird to shut it's beak Kvak-Kvak"
15 >>> squeeky.speak()
16 'Kvak-Kvak Sugar! Kvak-Kvak'

Consistency When we inherit from Parrot , we know the functions should
be called speak , learn (and not talk , practice)

• Env : (reset , step , action_space and a few other)
• Agent : (pi , train)

Functionality By using super().__init__ we saved a single line
• In control theory, we will use inheritance to add

simulation-functionality to all models
40 DTU Compute Lecture 1 2 February, 2024

Programming
The inventory environment

1 # inventory_environment.py
2 class InventoryEnvironment(Env):
3 def __init__(self, N=2):
4 self.N = N # planning horizon
5 self.action_space = Discrete(3) # Possible actions {0, 1, 2}
6 self.observation_space = Discrete(3) # Possible observations {0, 1, 2}
7
8 def reset(self):
9 self.s = 0 # reset initial state x0=0

10 self.k = 0 # reset time step k=0
11 return self.s, {} # Return the state we reset to (and an empty dict)
12
13 def step(self, a):
14 w = np.random.choice(3, p=(.1, .7, .2)) # Generate random disturbance
15 s_next = max(0, min(2, self.s-w+a)) # next state; x_{k+1} = f_k(x_k, u_k, w_k)
16 reward = -(a + (self.s + a - w)**2) # reward = -cost = -g_k(x_k, u_k, w_k)
17 terminated = self.k == self.N-1 # Have we terminated? (i.e. is k==N-1)
18 self.s = s_next # update environment state
19 self.k += 1 # update current time step
20 return s_next, reward, terminated, False, {} # return transition information

Recall xk+1 = xk − wk + ak (clipped at 0 and 2) and e.g. P (w = 0) = 1
10

41 DTU Compute Lecture 1 2 February, 2024

Programming
The Agent:

1 # inventory_environment.py
2 class RandomAgent(Agent):
3 def pi(self, s, k, info=None):
4 """ Return action to take in state s at time step k """
5 return np.random.choice(3) # Return a random action

• The policy µk(xk) corresponding to pi(x, k, info)

• A training function which is given xk, uk and xk+1 plus obtained reward plus
additional information

• In each exercise session, you will write at least one agent
• Look at the Agent -class

• truncated=False ; info is ’extra information’ (see documentation)

42 DTU Compute Lecture 1 2 February, 2024

Programming
The train -function
The train-function computes an episode as follows:

1 # inventory_environment.py
2 def simplified_train(env: Env, agent: Agent) -> float:
3 s, _ = env.reset()
4 J = 0 # Accumulated reward for this rollout
5 for k in range(1000):
6 a = agent.pi(s, k)
7 sp, r, terminated, truncated, metadata = env.step(a)
8 agent.train(s, a, sp, r, terminated)
9 s = sp

10 J += r
11 if terminated or truncated:
12 break
13 return J

Above computes the sum-of-reward for one episode:

1 # inventory_environment.py
2 env = InventoryEnvironment()
3 agent = RandomAgent(env)
4 stats, _ = train(env,agent,num_episodes=1,verbose=False) # Perform one rollout.
5 print("Accumulated reward of first episode", stats[0]['Accumulated Reward'])

43 DTU Compute Lecture 1 2 February, 2024

Programming
Approximate value function

Approximate

Jπ(x0) = E
[
gN (xN) +

N−1∑

k=0
gk(xk, µk(xk), wk)

]
(1)

As average over 1000 trajectories

1 # inventory_environment.py
2 stats, _ = train(env, agent, num_episodes=1000,verbose=False) # do 1000 rollouts
3 avg_reward = np.mean([stat['Accumulated Reward'] for stat in stats])
4 print("[RandomAgent class] Average cost of random policy J_pi_random(0)=", -avg_reward)

44 DTU Compute Lecture 1 2 February, 2024

Programming
Quiz 3: Bobs friend

Bob has x0 = 20 kroner. He can either:
• Action u = 0: Put them in the bank at a 10% interest, thereby ending up with

22 kroner.
• Action u = 1: Lend them to a friend.

• With probability 1
4 he looses everything

• With probability 3
4 his friend gives him 12 kroner (aka one beer) as a thank

you, and thus he will have 20 + 12 = 32 kroner total.

Bobs goal is to decide whether to put his money in the bank, or lend them
to his friend. Which one of the following statements are correct:
a. The state spaces are Sk = {1, 2, . . . , 32}.
b. The dynamics is f0(x0, u0, w0) = 1.1x0 + 3

4(x0 + 12u0).
c. The action space is A0(x0) = {0, 1}
d. It is not possible to determine an optimal policy since we don’t know
what Bobs friend will do.

45 DTU Compute Lecture 1 2 February, 2024

Programming
Exercises

• IT015: Passive exercises; installation problems
• Aud.21 + IT019: Interactive exercises.

Try to prepare and present homework exercises.

46 DTU Compute Lecture 1 2 February, 2024

exercises

Tue Herlau.
Sequential decision making.
(Freely available online), 2024.

47 DTU Compute Lecture 1 2 February, 2024

