

02465: Introduction to reinforcement learning and control

Model-Free Control with tabular and linear methods

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)



DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

- 1 The finite-horizon decision problem 2 February
- 2 Dynamical Programming 9 February
- 3 DP reformulations and introduction to Control

16 February

Control

- Discretization and PID control 23 February
- 6 Direct methods and control by optimization

1 March

- 6 Linear-quadratic problems in control 8 March
- Linearization and iterative LQR

15 March

Reinforcement learning

- 8 Exploration and Bandits 22 March
- Opening Policy and value iteration 5 April
- Monte-carlo methods and TD learning 12 April
- Model-Free Control with tabular and linear methods

19 April

- Eligibility traces and value-function approximations 26 April
- Q-learning and deep-Q learning 3 May

19 April, 2024 DTU Compute Lecture 11

Syllabus: https://02465material.pages.compute.dtu.dk/02465public

Help improve lecture by giving feedback on DTU learn

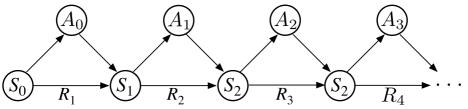
Reading material:

• [SB18, Chapter 6.4-6.5; 7-7.2; 9-9.3; 10.1]

Learning Objectives

- Sarsa on-policy learning
- Q off-policy learning
- the n-step return
- value-function approximations and linear methods

Recap: First-Visit Monte-Carlo value estimation



We want to calculate the value function $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$. Simulate an episode of experience $s_0, a_0, r_1, s_1, a_1, r_2, \dots, r_T$ using π

- ullet First step t we visit a state s
- Measure return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$ for rest of the episode
- Estimate value function as $v_{\pi}(s_t) = \mathbb{E}[G_t|S_t = s] \approx \frac{1}{n}\sum_{i=1}^n G_t^{(n)}$
- The average can be computed incrementally:

$$V(s) \leftarrow V(s) + \frac{1}{n} (G_t - V(s))$$

• We use a fixed learning rate α

$$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$$

Dynamical Programming

Bellman equation	Learning algorithm	
Bellman expectation equation for v_{π} $v_{\pi}(s) = \mathbb{E}_{\pi}\left[R + \gamma v_{\pi}\left(S'\right) s\right]$	Iterative policy evaluation to learn v_{π} $V(s) \leftarrow \mathbb{E}_{\pi}\left[R + \gamma V\left(S'\right) s\right]$	
Bellman expectation equation for q_{π} $q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[R + \gamma q_{\pi}\left(S',A'\right) s,a\right]$	Iterative policy evaluation to learn q_{π} $Q(s,a) \leftarrow \mathbb{E}_{\pi}\left[R + \gamma Q\left(S',A'\right) s,a\right]$	r, a

Policy iteration: Use policy evaluation to estimate v_- or a_-

Follow Relation: Ose policy evaluation to estimate v_{π} or q_{π}				
Improve by acting greedily: $\pi'(s) \leftarrow \arg\max_{a} q_{\pi}(s,a)$				
Bellman optimality equation for v_* $v_*(s) = \max_a \mathbb{E}\left[R + \gamma v_*(S') s,a\right]$	$Value \ \textbf{iteration}$ $V(s) \leftarrow \max_a \mathbb{E}\left[R + \gamma V(S') s, a\right]$	s max r a os'o		
Bellman optimality equation for q_* $q_*(s,a) = \mathbb{E}\left[R + \gamma \max_{a'} q_*(S',a') s,a\right]$	Q -value iteration $Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a'} Q(S',a') s,a \right]$	r s' r s'		

TD and MC value estimation

- Recall $v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$
- MC learning: G_t estimate of $v_{\pi}(s)$; update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_t} - V(S_t) \right)$$

Bellman equation:

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s]$$

• TD learning: $R_{t+1} + \gamma V\left(S_{t+1}\right)$ is also an estimate of $v_{\pi}(s)$; update:

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(R_{t+1} + \gamma V\left(S_{t+1}\right) - V\left(S_{t}\right)\right)$$

- TD learning has several advantages
 - Lower variance
 - Don't have to wait for episode to finish
- ullet Natural idea: Apply TD to Q(s,a)
 - Still ε -greedy policy improvement
 - ullet Update Q estimates at each time step

Sarsa estimation of action-value function

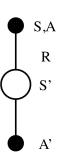
• Bellman equation:

$$q_{\pi}(s, a) = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right) | S_t = s, A_t = a\right]$$

- Implies $R_{t+1} + \gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right)$ is an estimate of $q_{\pi}(s, a)$
- Implies the update equation

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(\mathbf{R} + \gamma Q(S', A') - Q(S, A) \right)$$

• We use bootstrapping (i.e. biased estimate)



Sarsa control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

$$S \leftarrow S'; A \leftarrow A';$$

until S is terminal



Convergence of Sarsa

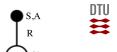
Sarsa converge to optimal action-value function $Q o q_{st}$ assuming

- GLIE sequence of policies (decreasing but non-trivial exploration)
- ullet Robbins-Monro sequence of step-sizes $lpha_t$

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Q-learning

Using the Bellman optimality equation



• Bellman equation:

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a\right]$$

- ullet Implies $R_{t+1} + \gamma \max_{a'} q_* \left(S_{t+1}, a' \right)$ is a Monte-Carlo estimate of $q_*(s,a)$
- Implied update equation

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

• Note we use bootstrapping (i.e. biased estimate)

Q-learning is off-policy

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A) \right)$$

- The **behavior policy** determines which S_t, A_t are visited
- The environment determines what happens next (S')
- The Q-values are updated without reference to the behavior policy
- Q-learning is therefore off-policy

Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s\in \mathbb{S}^+, a\in \mathcal{A}(s)$, arbitrarily except that $Q(terminal,\cdot)=0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

 $S \leftarrow S'$

until S is terminal

Exam question: Q-learning

- a. The first step in training a Q-learning agent is to compute the set of all states the agent can be in
- **b.** The Q-table Q(s,a) in Q-learning is a measure of the reward the agent will obtain in the very next step multiplied by γ
- **c.** Q-learning still works if we initialize the Q-table to -1, i.e. Q(s,a)=-1 for all $s\in\mathcal{S}$
- ${f d.}$ When Q-learning is applied to a deterministic environment, the agent will follow a deterministic policy
- e. Don't know.

Convergence of Q-learning

Q-learning converge to optimal action-value function $Q o q_*$ assuming

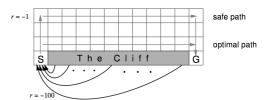
- All s, a pairs visited infinitely often
- ullet Robbins-Monro sequence of step-sizes $lpha_t$

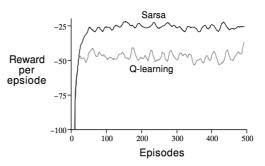
$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

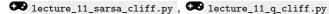
Q-learning

Comparing Q-learning and SARSA

- Reward -100 if we fall
- Reward -1 per step
- Both use ε -greedy exploration







Algorithms so far

Bellman equation	Learning algorithm	TD Learnin $V(S) \stackrel{lpha}{\leftarrow} R$	$+ \gamma V(S')$
Bellman expectation equation for v_{π} $v_{\pi}(s) = \mathbb{E}_{\pi}\left[R + \gamma v_{\pi}\left(S'\right) s\right]$	Iterative policy evaluation $V(s) \leftarrow \mathbb{E}_{\pi}\left[R + \gamma V\left(s\right)\right]$		
Bellman expectation equation for q_{π}	Iterative policy evaluation	•	
$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R + \gamma q_{\pi} \left(S', A' \right) s, a \right]$	$Q(s,a) \leftarrow \mathbb{E}_{\pi} \left[R + \gamma Q \left(S' \right) \right]$	Sarsa	

Policy iteration: Use policy evaluation to estimate v_{π} or q_{π} $Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$

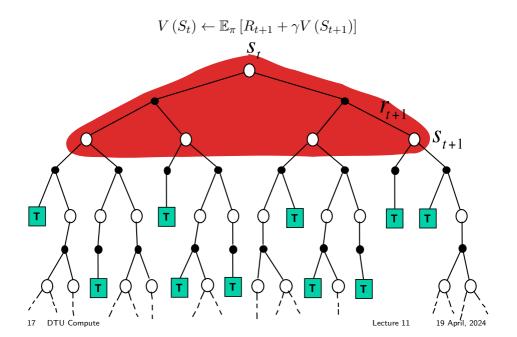
Improve by acting greedily: $\pi'(s) \leftarrow \arg\max_a q_\pi(s,a)$ Bellman optimality equation for v_* $v_*(s) = \max_a \mathbb{E}\left[R + \gamma v_*(S')|s,a\right]$ Value iteration $V(s) \leftarrow \max_a \mathbb{E}\left[R + \gamma V(S')|s,a\right]$ Bellman optimality equation for q_* Q-value iteration

$$q_*(s,a) = \mathbb{E}\left[R + \gamma \max_{a'} q_*(S',a')|s,a\right] \quad Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a'} Q(\frac{S'}{\mathsf{Q-Learning}})\right]$$

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$

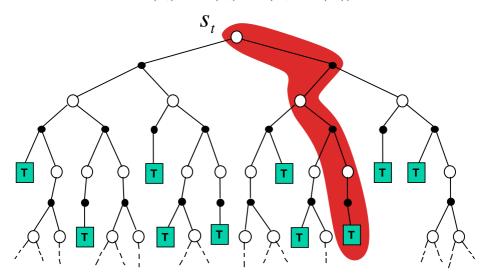
 $(S,A) \overset{lpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a)$

From two weeks ago: DP backups

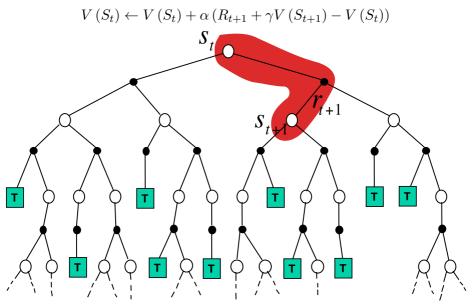


Last week: MC backups

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t} - V\left(S_{t}\right)\right)$$



Last week: TD backups



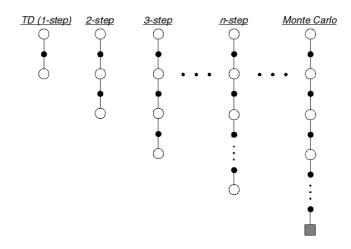
Comparisons

- Bootstrapping: Update involves an estimate (e.g. V)
 - TD and DP bootstraps
 - MC does not bootstrap
- Sampling: Update involves a sample estimate of an expectation
 - MC and TD sample
 - DP does not sample

Let's combine methods and avoid either/or choices

n-step predictions

ullet Let TD target look n steps into the future



n-step return

• Recall return is $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots$

$$\begin{array}{ll} n=1\text{: (TD)} & G_t^{(1)}=R_{t+1}+\gamma G_{t+1} \\ n=2\text{:} & G_t^{(2)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 G_{t+2} \\ n\text{:} & G_t^{(n)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^n G_{t+n} \\ n=\infty \text{ (MC): } & G_t^{(\infty)}=R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{T-1} R_T \end{array}$$

Using the rules of expectations:

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | s]$$

$$= \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \mathbb{E}\left[\gamma^n G_{t+n} | S_{t+n}\right] | S_t = s\right]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v_{\pi}(S_{t+n}) | S_t = s]$$

Therefore, the *n*-step return is an estimate of $V(S_t)$

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

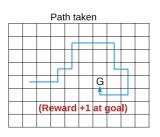
• This gives *n*-step temporal difference update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_{t:t+n}} - V(S_t) \right)$$

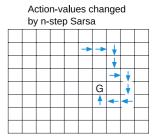
n-step TD: Implementation details

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$
$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

- ullet We cannot compute $G_t^{(n)}$ until we have the n next steps episodes
 - Maintain buffer of size n
- ullet At end of episode, we are still missing n-1 updates
 - Do a for-loop and perform missing updates







n-step Sarsa for value estimation

```
n-step TD for estimating V \approx v_{\pi}
Input: a policy \pi
Algorithm parameters: step size \alpha \in (0,1], a positive integer n
Initialize V(s) arbitrarily, for all s \in S
All store and access operations (for S_t and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take an action according to \pi(\cdot|S_t)
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then T \leftarrow t+1
       \tau \leftarrow t - n + 1 (\tau is the time whose state's estimate is being updated)
       If \tau > 0:
          G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
          If \tau + n < T, then: G \leftarrow G + \gamma^n V(S_{\tau+n})
           V(S_{\tau}) \leftarrow V(S_{\tau}) + \alpha \left[ G - V(S_{\tau}) \right]
   Until \tau = T - 1
```

n-step Sarsa

Recall the decomposition:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n}$$

As before:

$$q_{\pi}(s,a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | S_t = s, A_t = a]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n q_{\pi}(S_{t+n}, A_{t+n}) | S_t = s, A_t = a]$

ullet Therefore, the following n-step action-value return is an unbiased estimate of q_π

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q_\pi \left(S_{t+n}, A_{t+n} \right)$$

• Suggest the following bootstrap update of the action-value function

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha \left(q_{t}^{(n)} - Q\left(S_{t}, A_{t}\right)\right)$$

n-step Sarsa for control

```
n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be \varepsilon-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0, a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
    Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim \pi(\cdot|S_0)
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then:
               T \leftarrow t + 1
           else:
                Select and store an action A_{t+1} \sim \pi(\cdot | S_{t+1})
       \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
       If \tau > 0:
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[ G - Q(S_{\tau}, A_{\tau}) \right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is \varepsilon-greedy wrt Q
    Until \tau = T - 1
```

Scaling up reinforcement learning

We want to apply RL to large problems

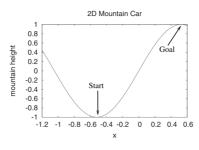
• Chess: $> 10^{40}$ states

• Go: $> 10^{170}$ states

• Robot arm: continuous state space

• Example: Mountain-Car position, velocity. Discrete actions

$$oldsymbol{s} = egin{bmatrix} s_1 \ s_2 \end{bmatrix} \in \mathbb{R}^2$$



Value Function Approximation

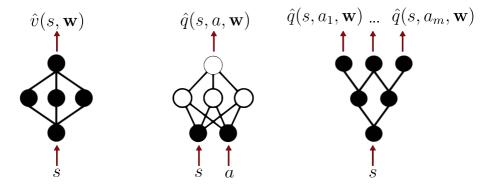
- ullet We have used loopup table representation (stored Q(s,a) as a big table)
 - Every state s has an entry V(s) or
 - ullet Every state-action pair s,a has an entry Q(s,a)
- Issues with lookup tables
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Idea:
 - Estimate value function or state-action value with function approximation

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

$$\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$$

• Generalize from seen states to unseen states

Types of Value Function Approximation



Our approximators need to be differentiable:

- Neural networks
- Linear combination of features

Feature Vectors and linear representations

• Represent value function by a linear combination of features

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top} \mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^d$$

Where **feature vector** is defined as:

$$\mathbf{x}(s) = \begin{bmatrix} \mathbf{x}_1(s) \\ \vdots \\ \mathbf{x}_d(s) \end{bmatrix}$$

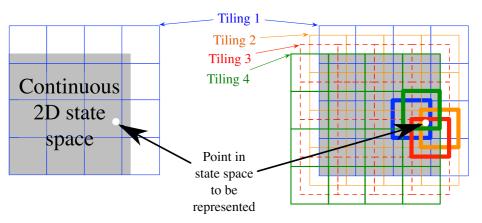
• The gradient is simply:

$$\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$$

In this case $\hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)^{\top} \boldsymbol{w}$

Feature vector construction: Tile coding

- ullet Divide each dimension of $oldsymbol{s}$ into a number of tiles n_T
- Translate tiles in fraction of tile width to get overlap

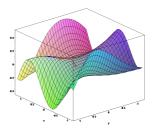


ullet x has now n_T non-zero elements corresponding to the number of active tiles

Recall from 02450: Gradient Descent

- ullet Let $E(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- ullet The gradient of $E(\mathbf{w})$ is

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial E(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial E(\mathbf{w})}{\partial w_n} \end{bmatrix}$$



• Adjust \mathbf{w} in direction of negative gradient to find a **local minimum** of $E(\mathbf{w})$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} E(\mathbf{w})$$

with step-size parameter α (learning rate)



Using the approximations

• Consider TD learning which implements Bellman equation:

$$v_{\pi}(s) = \mathbb{E}[R + \gamma v(S')|s]$$

Standard TD update

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$

• Easy to plug in $\hat{v}(s, w)$ instead of V(s) on right-hand side

$$\hat{v}(s, \boldsymbol{w}) \leftarrow \hat{v}(s, \boldsymbol{w}) + \alpha(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w}))$$

• ..but how do we update w on the left-hand side so $\hat{v}(s, \pmb{w})$ agrees with r.h.s.?

Value-function approximations

DTU

Take a step back: What do we want to do?

- ullet No function approximators: $v(s) = \mathbb{E}[R + \gamma v(S')|s]$
- ullet With function approximators: Find w so that:

$$\hat{v}(s, \boldsymbol{w}) = \mathbb{E}[R + \gamma v(S')|s]$$

• Find w so that:

$$\boldsymbol{w} = \operatorname*{arg\,min}_{\boldsymbol{w}} \frac{1}{2} (\hat{v}(s, \boldsymbol{w}) - \mathbb{E}[R + \gamma v(S')|s])^2$$

ullet Find $oldsymbol{w}$ using gradient descent:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \nabla_{\boldsymbol{w}} \frac{1}{2} (\hat{v}(s, \boldsymbol{w}) - \mathbb{E}[\boldsymbol{R} + \gamma v(\boldsymbol{S}') | s])^{2}$$

$$= \boldsymbol{w} + \alpha (\hat{v}(s, \boldsymbol{w}) - \mathbb{E}[\boldsymbol{R} + \gamma v(\boldsymbol{S}') | s]) \nabla \hat{v}(s, \boldsymbol{w})$$

$$\approx \frac{1}{B} \sum_{n=1}^{B} r^{(n)} + v(s'^{(n)})$$

ullet Use a sample-size of B=1 to compute the average

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha (\hat{v}(s, \boldsymbol{w}) - \boldsymbol{r} + \gamma v(s')) \nabla \hat{v}(s, \boldsymbol{w})$$

Summary

- ullet Given $f(x) = \mathbb{E}_z[g(x,z)]$ and approximation-function $\hat{f}(x,oldsymbol{w})$
- To find w such that $\hat{f}(x, w) \approx f(x)$ iterate:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(g(\boldsymbol{x}, \boldsymbol{z}) - \hat{f}(\boldsymbol{x}, \boldsymbol{w}) \right) \nabla \hat{f}(\boldsymbol{x}, \boldsymbol{w})$$

• TD learning: $V(s) = \mathbb{E}[R + \gamma V(S')|s]$ and $\hat{v}(s, \boldsymbol{w}) \approx v(s)$

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w})) \nabla \hat{v}(s, \boldsymbol{w})$$

• Sarsa learning: $q(s,s) = \mathbb{E}[R + \gamma q(S',A')|s,a]$ and $\hat{q}(s,a,w) \approx q(s,a)$

$$\begin{aligned} q(s, a) &\leftarrow q(s, a) + \alpha \left(r + \gamma q(s', a') - q(s, a) \right) \\ \boldsymbol{w} &\leftarrow \boldsymbol{w} &+ \alpha \left(r + \gamma \hat{q}(s', a', \boldsymbol{w}) - \hat{q}(s, a, \boldsymbol{w}) \right) \nabla \hat{q}(s, a, \boldsymbol{w}) \end{aligned}$$

• Q-learning: $q(s,s) = \mathbb{E}[R + \gamma \max_{a'} q(S',a')|s,a]$ and $\hat{q}(s,a,w) \approx q(s,a)$ $q(s,a) \leftarrow q(s,a) + \alpha(r + \gamma \max_{a'} q(s',a') - q(s,a))$

$$oldsymbol{w} \leftarrow oldsymbol{w} + lpha \left(r + \gamma \max_{a'} \hat{q}(s', a', oldsymbol{w}) - \hat{q}(s, a, oldsymbol{w}) \right)
abla \hat{q}(s, a, oldsymbol{w})$$

• Remember that $\nabla \hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)$ and $\nabla v(s, \boldsymbol{w}) = \boldsymbol{x}(s)$

Quiz: Linear function approximators

Which of the following statements is true about reinforcement learning and linear function approximators?

- **a.** Linear function approximators can only be used with continuous state spaces and not with discrete spaces.
- **b.** Linear function approximators provide a way to generalize from known states to unknown states, which can be useful in tabular reinforcement learning situations with large state spaces.
- **c.** Linear function approximators in SARSA or Q-learning requires that we store all state-action pairs.
- d. When using linear function approximators the policy will be deterministic
- e. Don't know.

Implementing this

1

10

11

12 13

14

```
# semi_grad_q.py

class LinearSemiGradQAgent(QAgent):

def __init__(self, env, gamma=1.0, alpha=0.5, epsilon=0.1, q_encoder=None):

    """ The Q-values, as implemented using a function approximator, can now be accessed as follows:

>> self.Q(s,a) # Compute q-value

>> self.Q.x(s,a) # Compute gradient of the above expression wrt. w

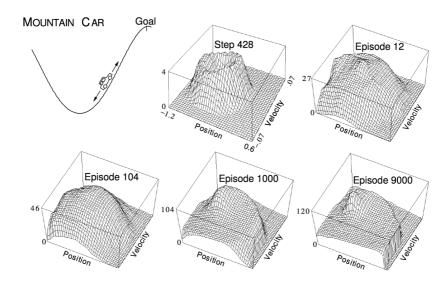
>> self.Q.w # get weight-vector.

I would recommend inserting a breakpoint and investigating the above expressions yourself;
you can of course al check the class LinearQEncoder if you want to see how it is done in practice.

"""

super().__init__(env, gamma, epsilon=epsilon, alpha=alpha)
self.Q = LinearQEncoder(env, tillings=8) if q_encoder is None else q_encoder
```

Linear Sarsa with tite coding in mountain car



Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018. (Freely available online).

Approximation: The big picture

• Suppose f is a real-valued function $f:\mathcal{X}\mapsto\mathbb{R}$ which happens to be defined using an expectation:

$$f(x) = \mathbb{E}_z [g(x, z)] = \int p(z|x)g(x, z)dz$$

- ullet Assume that $\hat{f}(x, oldsymbol{w})$ is a neural network we want to use to approximate f with
- Problem: How do we find w such that $\hat{f}(x, w) \approx f(x)$?
- Idea: Select w to minimize

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{arg\,min}} \, \mathbb{E}_x \left[\left[\hat{f}(x, \boldsymbol{w}) - f(x) \right]^2 \right]$$
 (1)

Solve this using gradient descent:

$$w \leftarrow w - \alpha \nabla \left(\mathbb{E} \left[f(x) - \hat{f}(x, \boldsymbol{w}) \right]^2 \right)$$
 (2)

Evaluating the gradient

$$\nabla \left(\mathbb{E} \left[\hat{f}(x, \boldsymbol{w}) - f(x) \right]^{2} \right) = \mathbb{E} \left[\nabla \left(\hat{f}(x, \boldsymbol{w}) - f(x) \right)^{2} \right]$$

$$= 2\mathbb{E} \left[\left(\hat{f}(x, \boldsymbol{w}) - f(x) \right) \nabla \hat{f}(x, \boldsymbol{w}) \right]$$

$$= 2\mathbb{E} \left[\left(\hat{f}(x, \boldsymbol{w}) - \mathbb{E}_{\boldsymbol{z}}[g(x, \boldsymbol{z})] \right) \nabla \hat{f}(x, \boldsymbol{w}) \right]$$

Implication: Given samples $x \sim p$ and $z \sim p(z|x)$ then

$$2\left(\hat{f}(x, \boldsymbol{w}) - g(x, z)\right) \nabla \hat{f}(x, \boldsymbol{w})$$

is an unbiased estimate of the gradient

Stochastic gradient descent

Given minimization problem $rg \min F(oldsymbol{w})$ and (technical conditions!) then

$$\boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t - \alpha_t \hat{g}(\boldsymbol{w}_t)$$

converge to w^* provided $\hat{g}(w)$ is an unbiased estimate of the gradient $\nabla F(w)$