02465: Introduction to reinforcement learning and control

Model-Free Control with tabular and linear methods

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

DTU Compute
epartment of Applied Mathematics and Computer Science

(=]
—
=

M

Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
2 February
@® Dynamical Programming
9 February
© DP reformulations and introduction to
Control
16 February
Control
@ Discretization and PID control
23 February
@ Direct methods and control by
optimization
1 March
@ Linear-quadratic problems in control
8 March
@ Linearization and iterative LQR
15 March

=
—
=

M

Reinforcement learning

@ Exploration and Bandits
22 March

@ Policy and value iteration
5 April

@ Monte-carlo methods and TD learning
12 April

@® Model-Free Control with tabular
and linear methods
19 April

@ Eligibility traces and value-function
approximations
26 April

® Q-learning and deep-Q learning

3 May

Syllabus: https://02465material . pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute

Lecture 11 19 April, 2024

 https://02465material.pages.compute.dtu.dk/02465public

Reading material:

e [SB18, Chapter 6.4-6.5; 7-7.2; 9-9.3; 10.1]

)
o |
=

M

Learning Objectives

® Sarsa on-policy learning
® Q off-policy learning
® the n-step return

® value-function approximations and linear methods

3 DTU Compute

Lecture 11

19 April, 2024

]
=

M

Recap: First-Visit Monte-Carlo value estimation

GV, R SR,

We want to calculate the value function v, (s) = E[G¢|S; = s].
Simulate an episode of experience sg, ag,r1, S1,a1,72,...,TT Using 7

® First step ¢ we visit a state s
® Measure return Gy = Ry 1 + yYRiyo + Y2 Riys + - - for rest of the episode
® Estimate value function as v (s;) = E[G|S; = s] = + 31" | G(n)

® The average can be computed incrementally:

V(s) + V(s)+ %(GL —V(s))

® We use a fixed learning rate o

V(s) < V(s)+ a(Gy =V (s))

4 DTU Compute Lecture 11 19 April, 2024

. - >
Dynamical Programming =
Bellman equation Learning algorithm
Bellman expectation equation for v Iterative policy evaluation to learn v,
vr(s) = Ex [R+ yor (5')[s] V(s) < Ex [R+~V (5') |s]
Bellman expectation equation for ¢ Iterative policy evaluation to learn g
gr(s,a) = Ex [R+ vgr (S, A") |s, a) Q(s,a) «+ Ex [R+vQ (5", A) s, q]

Policy iteration: Use policy evaluation to estimate v, or ¢r

Improve by acting greedily: 7/(s) +— argmax, gr (s, a)

Bellman optimality equation for v Value iteration
v« (s) = maxq E [R + v« (S’)|s, a] V(s) < max, E[R+~V(5)]s, qa]
Bellman optimality equation for g« Q-value iteration

qx (57 a’) =E [RJ’_A/ maXgs s (Slv a,)|57 a’} Q(Sv a) «~E [R+'Ymaxa’ Q(S,a al)‘sr a]

5 DTU Compute Lecture 11 19 April, 2024

=
—
=

M

TD and MC value estimation
® Recall v, (s) = E[Gy]S; = s]
® MC learning: G} estimate of v, (s); update:
V(St) = V(St) + a (G =V (5))
® Bellman equation:
vr(8) = E[Ri1 + 9V (St41)[Se = 8]
® TD learning: R;11 + 7V (Si+1) is also an estimate of v, (s); update:

V(S) <V (S) + a(Riy1 +9V (Si41) =V (Sh))

® TD learning has several advantages

® | ower variance
® Don't have to wait for episode to finish

® Natural idea: Apply TD to Q(s,a)

® Still e-greedy policy improvement
® Update () estimates at each time step

6 DTU Compute Lecture 11 19 April, 2024

Sarsa estimation of action-value function

® Bellman equation:
qn(8,a) = E[Rip1 + 7Gx (Se41, Ar41)S: = 8, Ay = d

® Implies Riy1 + Yqr (St41, A¢11) is an estimate of ¢, (s, a)

® Implies the update equation
Q(S,4) « Q(S, A) + a(R+7Q (5", A') — Q(S, 4))

® We use bootstrapping (i.e. biased estimate)

7 DTU Compute Lecture 11

=
—
=

M

@® sa

R

Os

@

19 April, 2024

osvg-71

Sarsa control

Sarsa (on-policy TD control) for estimating Q ~ ¢.

Algorithm parameters: step size a € (0, 1], small £ > 0

Initialize Q(s, a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,A) « Q(S,A) + a[R+Q(S", A') — Q(S, A)]
S+ S5 A« A
until S is terminal

)
o |
=

M

lecture_11_sarsa.py

8

DTU Compute Lecture 11

19 April, 2024

Convergence of Sarsa

| M

Sarsa converge to optimal action-value function Q — ¢, assuming
® GLIE sequence of policies (decreasing but non-trivial exploration)

® Robbins-Monro sequence of step-sizes a;

oo oo
E oy = 00, g a? < 0o
t=1 t=1

)
o |
=

9 DTU Compute Lecture 11

19 April, 2024

Using the Bellman optimality equation

® Bellman equation:

g«(s,a) = E |:Rt+1 + ymax g (Si41, a)|Sy = s, Ay = a}

® Implies R;y1 + ymax, ¢« (S¢11,a’) is a Monte-Carlo estimate of g, (s,

® Implied update equation
Q(S,4) ¢ Q(S,A) +a (R +ymaxQ (5',a') ~ Q(S, 4))

® Note we use bootstrapping (i.e. biased estimate)

10 DTU Compute Lecture 11

=
—
=

M

a)

19 April, 2024

osvg-88

)
o |
=

M

-learning is off-policy

Q(S, A) « Q(S, A) + (R FymaxQ (') - Q(S, A))

® The behavior policy determines which Sy, A; are visited
® The environment determines what happens next (S’)
® The (Q-values are updated without reference to the behavior policy

® (Q-learning is therefore off-policy

11 DTU Compute Lecture 11 19 April, 2024

-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0

Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from @Q (e.g., e-greedy)

Take action A, observe R, S’
Q(S, A) « Q(S, A) + a[R + ymax, Q(S',a) — Q(S, 4)]
S+ S

until S is terminal

)
o |
=

M

+) lecture_11_q.py

12

DTU Compute

Lecture 11

19 April, 2024

=
—
=

Exam question: Q-learning

M

a. The first step in training a Q-learning agent is to compute the set of all
states the agent can be in

b. The Q-table Q(s,a) in Q-learning is a measure of the reward the agent
will obtain in the very next step multiplied by v

c. Q-learning still works if we initialize the Q-table to —1, i.e. Q(s,a) = —1
forallse S

d. When @Q-learning is applied to a deterministic environment, the agent will
follow a deterministic policy

e. Don't know.

13 DTU Compute Lecture 11 19 April, 2024

)
o |
=

M

Convergence of ()-learning
Q@-learning converge to optimal action-value function Q — ¢. assuming

® All s, a pairs visited infinitely often

® Robbins-Monro sequence of step-sizes a;

oo oo
E oy = 00, g a? < 0o
t=1 t=1

14 DTU Compute Lecture 11 19 April, 2024

Comparing @-learning and SARSA

® Reward —100 if we fall
® Reward —1 per step

® Both use e-greedy exploration

Reward
per
epsiode

)
o |
=

M

r=-1

safe path

optimal path

S

The Cliff G

Sarsa

-25

-50 .

Q-learning
-75
-100 T T T T 1
0 100 200 300 400 500

Episodes

(+) lecture_11_sarsa_cliff.py , (+) lecture_11_g_cliff.py

15 DTU Compute

Lecture 11 19 April, 2024

osvg-91

Algorithms so far

TD Learning
Learning algorithm \/(5) &R + 'yV(SI)

Bellman equation

Bellman expectation equation for v Iterative policy evaluation to learn v,

vn(s) = Ex [R+ yvx (57) [s] V(s) < Ex [R+V (5)]3]

Iterative policy evaluation to learn g

Bellman expectation equation for ¢

Qs, @) « Ex [R+1Q(S'[g5e

(IW(S’ CL) =Ex [R+ V4w (S/»Al) |s»a]
Q(S,A) & R+4Q(S, A)

Policy iteration: Use policy evaluation to estimate v, or ¢r

Improve by acting greedily: 7/(s) +— argmax, gr (s, a)

Bellman optimality equation for v Value iteration

v« (s) = maxq E [R + v« (S’)|s, a] V(s) < max, E[R+~V(5)]s, qa]

5,
Bellman optimality equation for g« Q-value iteration /&g/
nax \
fali I\ 1 L

p— ! !
g« (8,a) =E [R+ymax, g«(S’,a’)|s,a] | Q(s,a)+E[R+~ymax, Q(QLeaming
« . o ’
where x <~ y = x + x+ a(y —x) Q(S,A)eR+'yg1€a\§Q(S,a)

16 DTU Compute

osvg-93

From two weeks ago: DP backups

V (St) < Ex [Rip1 + 9V (St41)]
S
()

(=]
=
=

M

’
’

Q0 OF O ® L o) O
A ’ ;N N |
o ;o\ : :

17 DTU Compute

/ \

Lecture 11

19 Apr{l, 2024

(=]
=
=

Last week: MC backups

M

Vv (St) —V (St) + « (Gt -V (St))
\)

t

18 DTU Compute Lecture 11 19 April, 2024

(=]
=
=

Last week: TD backups

M

V(St) <V (St) + a(Rep1 + vV (Sig1) — V (St))

19 DTU Compute Lecture 11 19 April, 2024

Comparisons

® Bootstrapping: Update involves an estimate (e.g. V')

® TD and DP bootstraps
® MC does not bootstrap

® Sampling: Update involves a sample estimate of an expectation

® MC and TD sample
® DP does not sample

Let's combine methods and avoid either/or choices

20 DTU Compute Lecture 11

=
—
=

M

19 April, 2024

n-step predictions

® Let TD target look n steps into the future

1D (1-step) 2-step 3-step n-step Monte Carlo

é

21 DTU Compute

Lecture 11

=
—
=

M

19 April, 2024

osvg-31

]
=

n-step return

M

® Recall return is Gy = Ry 1 +YRiyo + V2 Riy3 + VP Ripa + -+
n=1: (TD) G =Rty +1Gi
n =2 G =Ryt + YRiso + v2Grio
n: G=Rit1 + yRiyo + V2 Resz + -+ 7" "Rign +7"Grin
n=o00 (MC): G =Ry +yRipa+-+7" 'Ry
® Using the rules of expectations:
Vr(8) =E[Rep1 + YRig2 + -+ 9" ' Rign + 7" Grinls]
=E[Ris1 +7Ripo+ + 7" "Rign + E[Y"Grin|St4n] 1St = 5]
=E[Ris1 +VRiya + - + 7" Ripn + 7" 0x(St10)|S; = 8]
Therefore, the n-step return is an estimate of V' (.S;)
Grrn = Rip1 +7Ripa + -+ 7" ' Riyn +7"V (Stin)
® This gives n-step temporal difference update:
V(St) <+ V(St) + a(Griyn — V(St))

22 DTU Compute Lecture 11 19 April, 2024

(=]
=
=

n-step TD: Implementation details

M

Gl(tn) = Riy1 + YR+ + 7" Riyn + 7"V (St4n)
V(S1) « V(S) + o (G = V(Sy)

® \We cannot compute Gg") until we have the n next steps episodes
® Maintain buffer of size n
® At end of episode, we are still missing n — 1 updates

® Do a for-loop and perform missing updates

Action values changed by Action-values changed
Path taken one-step Sarsa by n-step Sarsa
—> —>| +
v
T T >y
' G G G| |
L [b e
(Reward [+1 at goal)

23 DTU Compute Lecture 11 19 April, 2024

n-step Sarsa for value estimation

\

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V'(s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T < oo
Loop for t =0,1,2,...:
| Ift<T, then:

Take an action according to 7(-|S)

Observe and store the next reward as R;,; and the next state as S;41

If Sy4q is terminal, then 7" < ¢ + 1

T+ t—n+1 (7 is the time whose state’s estimate is being updated)

G T i
If7+n<T,then: G+ G+ 4"V (Sr+n)
V(ST) «— V(ST) + o [G - V(ST)]

Until7=T -1

|
|
|
|
| Ifr>0:
|
|
|

]
=

M

(GT:T+n)

24

DTU Compute

Lecture 11

19 April, 2024

=
—
=

n-step Sarsa

M

Recall the decomposition:

Gt =R +YRipo + -+ 9" 'Rijn + 7"Grin

® As before:

gr(s,a) = E[Rip1 + YRipo + -+ 9" ' Riyn + 7" Gy St = 5, Ay = d
=E[Rip1+VRip2 + -+ 7" Rign + 7" x (Stn, Atgn)[Se = 5, Ay = a]

® Therefore, the following n-step action-value return is an unbiased estimate of ¢,
Qt(n) = Rip1+yRip2+ -+ 7" Rign + 7" 4x (Stin, Avgn)
® Suggest the following bootstrap update of the action-value function

Q (S, A1) « Q (S, A) +a (4" = Q(S1, A1)

25 DTU Compute Lecture 11 19 April, 2024

n-step Sarsa for control

26

)
o |
=

M

n-step Sarsa for estimating Q) ~ ¢. or ¢,

Initialize Q(s, a) arbitrarily, for all s € 8,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0,1], small £ > 0, a positive integer n

All store and access operations (for Sy, A, and R;) can take their index mod n + 1
Loop for each episode:

Initialize and store Sy # terminal
Select and store an action Ay ~ 7(:|Sp)

T + o0
Loop for t =0,1,2,...:
| Ift <T, then:

| Take action A

| Observe and store the next reward as R;4+1 and the next state as Sy41
| If Si41 is terminal, then:

| T+t+1

| else:

| Select and store an action A4y ~ 7(+|Si41)

| 7+ t—n+1 (7 is the time whose estimate is being updated)

| If7>0:

| GOy,

| If 7+n<T,then G+ G +v"Q(Sr4n, Arin) (Grir4n)
I Q(SnA-r) « Q(vaAT)+a[G_Q(ST7AT)]

| If 7 is being learned, then ensure that 7(:|S;) is e-greedy wrt @
Until7=T-1

DTU Compute Lecture 11 19 April, 2024

Scaling up reinforcement learning
We want to apply RL to large problems

® Chess: > 100 states
® Go: > 10170 states
® Robot arm: continuous state space

® Example: Mountain-Car position, velocity. Discrete actions

s = [81] € R?
52

2D Mountain Car
1

0.8 /
0.6

04 K Goal
0.2 [\ /

ol \ /
-0.2

/
04 \\1 Start /
0.6 A\
-0.8 \ /
-1 >
12 -1 -0.8-06-04-02 0 02 04 06
X

mountain height

27 DTU Compute Lecture 11

)
o |
=

M

19 April, 2024

]
=

Value Function Approximation

M

® We have used loopup table representation (stored (s, a) as a big table)

® Every state s has an entry V (s) or
® Every state-action pair s,a has an entry Q(s,a)

® |ssues with lookup tables

® There are too many states and/or actions to store in memory
® |t is too slow to learn the value of each state individually

® |dea:

® Estimate value function or state-action value with function approximation
(s, w) =2 v.(s)

(s,a,w) = qx(s,a)

® Generalize from seen states to unseen states

28 DTU Compute Lecture 11 19 April, 2024

Types of Value Function Approximation

(s, w) G(s,a,w) q(s,a1,w) ...

=
—
=

M

qA(S7 a’TYU W)

! ! 11

! I 1

S S a
Our approximators need to be differentiable:

® Neural networks

® Linear combination of features

29 DTU Compute Lecture 11 19 April, 2024

Feature Vectors and linear representations

® Represent value function by a linear combination of features

o(s,w) =x(s)'w, weR?

)

Where feature vector is defined as:

® The gradient is simply:
Vi(s,w) = x(s)

In this case §(s, a, w) = x(s,a) T w

30 DTU Compute Lecture 11

=
—
=

M

19 April, 2024

Feature vector construction: Tile coding

)
o |
=

M

® Divide each dimension of s into a number of tiles ny

® Translate tiles in fraction of tile width to get overlap

Tiling 1 —

Tiling 2
Tiling 3
Tiling 4

Continuous
2D state s

\

ace e U
: \ Point in /ﬁ’.‘f-_

state space
to be
represented

——FF{--
I
|
L

|
|
!
|
|
1
|
|
|
|

® & has now np non-zero elements corresponding to the number of active tiles

31 DTU Compute Lecture 11 19 April, 2024

Recall from 02450: Gradient Descent

)
o |
=

M

® Let F(w) be a differentiable function of parameter vector w

® The gradient of E(w) is

OF(w)
6’[1)1

VwE(w) =

OF(w)
Ow,

® Adjust w in direction of negative gradient
to find a local minimum of E(w)

W w — aVyE(w)
with step-size parameter « (learning rate)

32 DTU Compute

Lecture 11 19 April, 2024

)
o |
=

M

Using the approximations

® Consider TD learning which implements Bellman equation:
vn(s) = E[R +v(5)]s]
® Standard TD update
V(s) < V(s)+alr+~V(s") = V(s))
® Easy to plug in (s, w) instead of V'(s) on right-hand side
D(s,w) + (s, w) + alr + (s, w) — (s, w))

¢ _.but how do we update w on the left-hand side so 0(s, w) agrees with
r.h.s.?

33 DTU Compute Lecture 11 19 April, 2024

]
=

Take a step back: What do we want to do?

M

® No function approximators: v(s) = E[R + yv(S")]|s]
® With function approximators: Find w so that:

B(s,w) = E[R + yv(S")]s]

® Find w so that:

w = arg min % (0(s,w) — E[R + ’YU(S/)ls])Q

w

® Find w using gradient descent:

w - w + Vg (5, w) ~ E[R +30(5')|5))”

=w+a(d(s,w)— E[R+~v(5)|s])Vo(s,w)
—_— ——
~L Zle r(n) 4y (s/(n))
® Use a sample-size of B = 1 to compute the average
w <+ w+ a(d(s,w) —r+yv(s")) Vo(s, w)

34 DTU Compute Lecture 11 19 April, 2024

]
=

M

Summary

® Given f(z) = E.[g(x, z)] and approximation-function f(z,w)

® To find w such that f(z,w) ~ f(x) iterate:
w<—w+a(g(zw)Vf

® TD learning: V(s) = E[R+~V(5")]s] and 0(s, w

) ~
V(s) < V(s)+alr +V(s') = V(s))
w+w Ha(r+0(s’,w) — o(s,w)) Vo(s,w)

v(s)

® Sarsa learning: ¢(s,s) = E[R+ vq(S’, A")|s,a] and {(s,a,w) ~ q(s,a)

q(s,a) < q(s,a)+a (r +vq(s',a") — q(s,a))
w — w +a(r+74(s',d,w) — (s, a,w)) V

>
—~
JCIJ
e
g
N—

® ()-learning: q(s,s) = E[R + ymax, ¢(S5’,a’)|s,a] and (s, a,w) =~ q(s,a)
q(s,a) < q(s,a)+a(r +ymaxq(s',a’) — q(s,a))

w+w ta (r +ymax §(s’,a’,w) — §(s, a, w)) Vi(s,a,w)
a/

® Remember that V{(s,a, w) = x(s,a) and Vu(s,w) = z(s)

35 DTU Compute Lecture 11 19 April, 2024

=
—
=

Quiz: Linear function approximators

M

Which of the following statements is true about reinforcement learning and
linear function approximators?

a. Linear function approximators can only be used with continuous state
spaces and not with discrete spaces.

b. Linear function approximators provide a way to generalize from known
states to unknown states, which can be useful in tabular reinforcement
learning situations with large state spaces.

c. Linear function approximators in SARSA or Q-learning requires that we
store all state-action pairs.

d. When using linear function approximators the policy will be deterministic

e. Don't know.

36 DTU Compute Lecture 11 19 April, 2024

OOk WN —

Implementing this

)
o |
=

M

semi_grad_q.py
class LinearSemiGradQAgent (QAgent) :

def

__init__(self, env, gamma=1.0, alpha=0.5, epsilon=0.1, g_encoder=None) :
""" The Q-values, as implemented using a function approzimator, can now be accessed as follows:

>> self.Q(s,a) # Compute g-value
>> self.Q.z(s,a) # Compute gradient of the above exzpression wrt. w

>> self.Q.w # get weight-vector.

I would recommend inserting a breakpoint and investigating the above ezpressions yourself;

you can of course al check the class Linear(Encoder if you want to see how it is done in practice.

nun

super().__init__(env, gamma, epsilon=epsilon, alpha=alpha)
self.Q = LinearQEncoder(env, tilings=8) if q_encoder is None else q_encoder

37

DTU Compute Lecture 11 19 April, 2024

Linear Sarsa with tite coding in mountain car

MOUNTAIN CAR

38 DTU Compute

Lecture 11

(=]
=
=

M

19 April, 2024

osvg-119

[Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018.
(Freely available online).

39 DTU Compute

Lecture 11

)
o |
=

M

19 April, 2024

=
—
=

Approximation: The big picture

M

® Suppose f is a real-valued function f : X — R which happens to be defined
using an expectation:

ﬂmzmwmm=/mmwmam

® Assume that f(ac, w) is a neural network we want to use to approximate f with
* Problem: How do we find w such that f(z, w) ~ f(z)?

® |dea: Select w to minimize

w' = axgmin, | [f(e.w) -)] M

w

® Solve this using gradient descent:

wew-av (&) - jw)]))

40 DTU Compute Lecture 11 19 April, 2024

Evaluating the gradient

Implication: Given samples = ~ p and z ~ p(z|x) then

2 (f(:z;,'w) —g(x, z)) Vf(;c,w)

is an unbiased estimate of the gradient

Stochastic gradient descent

)
o |
=

M

Given minimization problem arg min F'(w) and (technical conditions!) then
Wiy < Wt — atf](wt)

converge to w* provided §(w) is an unbiased estimate of the gradient VF(w)

41 DTU Compute Lecture 11 19 April, 2024

	Sarsa control
	Q-learning
	n-step backups
	Value-function approximations
	Appendix

