

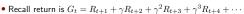
General plan

- ullet The λ -return provides a method to interpolate between TD(0) and Monte-Carlo
- There are forward and backward variant of λ -return methods
 - Forward: Quite easy to understand; annoying to implement
 - Backward: Harder to understand; it has the same updates of value-function but applied immediately. Much easier to implement.
- Additionally, [SB18] distinguishes between (i) regular $TD(\lambda)$ and a more advanced variant (ii) online $TD(\lambda)$
 - ...and the online-version also has a forward and backward view...
 - ...and [SB18] presents the methods in context of function approximators...

We will focus on the tabular version.

8 DTU Compute Lecture 12 26 April, 2024

From last week: The n-step return



$$\begin{array}{ll} n=1\text{: (TD)} & G_t^{(1)}=R_{t+1}+\gamma G_{t+1} \\ n=2\text{:} & G_t^{(2)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 G_{t+2} \\ n\text{:} & G_t^{(n)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^n G_{t+n} \\ n=\infty \text{ (MC)} \text{:} & G_t^{(\infty)}=R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{T-1} R_T \end{array}$$

• Using the rules of expectations:

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | s] \\ &= \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \mathbb{E}\left[\gamma^n G_{t+n} | S_{t+n}\right] | S_t = s\right] \\ &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v_{\pi} (S_{t+n}) | S_t = s] \end{aligned}$$

Therefore, the n-step return is an estimate of $V(S_t)$

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

ullet This gives n-step temporal difference update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_{t:t+n}}{G_t} - V(S_t) \right)$$

9 DTU Compute Lecture 12 26 April, 2024

Averaging n-step returns

DTU

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

ullet We can average n-step returns for different n. The estimator

$$\bar{G}_t = \frac{1}{3}G_{t:t+2} + \frac{2}{3}G_{t:t+4}$$

is still an estimator of the return

ullet More generally assuming that $\sum_{i=1}^\infty w_i=1$ then

$$\bar{G}_t = \sum_{i=1}^{\infty} w_i G_{t:t+i}$$

is an estimator of the return

10 DTU Compute Lecture 12 26 April, 2024

The λ -return $\lim_{t\to\infty} \frac{1-\lambda}{t}$ weight given to the 3-step return $G_{t:t+3}$ is $(1-\lambda)^{\lambda^2}$ weight given to G_t is λ^{T-t-1}

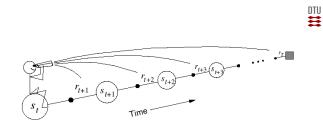
ullet Combine returns $G_{t:t+n}$ using weights $(1-\lambda)\lambda^{n-1}$ (note $\sum_{n=1}^{\infty}(1-\lambda)\lambda^{n-1}=1$)

$$G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$

• For t + n > T it is the case that $G_{t:t+n} = G_t$:

$$\lambda\text{-return:} \quad G_t^\lambda = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

11 DTU Compute Lecture 12 26 April, 2024



ullet Forward-view $\mathrm{TD}(\lambda)$ update rule is

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t}^{\lambda} - V\left(S_{t}\right)\right)$$

- \bullet Forward-view $\mathrm{TD}(\lambda)$ looks into the future to compute G^λ_t
- Like MC, it can only be computed from complete episodes
- \bullet Theoretically simple, but computationally impractical

12 DTU Compute Lecture 12 26 April, 2024

Backwards $TD(\lambda)$

weight given to $\text{the d-slape return $G_{t:t+3}$}$ is $(1-\lambda)\lambda^2$ weight given to G_t is λ^{7-t-1}

• We want to update $V(s_t) \leftarrow V^{\text{Time}}(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$

$$G_t^{\lambda} = (1 - \lambda) \sum_{t=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

$$= (1 - \lambda)G_{t:t+1} + (1 - \lambda)\lambda G_{t:t+2} + (1 - \lambda)\lambda^2 G_{t:t+3} + \dots + \lambda^{T-t-1}G_t$$

- ullet The return G_t^λ includes the term $(1-\lambda)\lambda^2 G_{t:t+3}$
- ullet This means $V(s_t)$ is updated towards

$$G_t^{\lambda} = \dots + (1 - \lambda)\lambda^2 (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 V(S_{t+3})) + \dots$$

- ullet Idea: Wait until time t+3, compute above terms and update $V(s_t)$ in the past
- ullet The further in the future a term R_{t+n} is, the less it influences past term $V(s_t)$

13 DTU Compute

ecture 12

nact

DTU

Eligibility trace

- ullet The eligibility trace E_t is just af function of states: $E_t:\mathcal{S} o\mathbb{R}$
- · Measures both how frequent and how recent a state was visited
- Initialized to $E_{t=0}(s) = 0$
- Updated at each time step as

$$E_t(s) = \left\{ \begin{array}{ll} \gamma \lambda E_{t-1}(s) & \text{if } s \neq s_t \\ \gamma \lambda E_{t-1}(s) + 1 & \text{if } s = s_t \end{array} \right.$$

- States decay at a rate of $\gamma\lambda$
- ullet Each time they are visited they get a bonus of +1,

14 DTU Compute Lecture 12 26 April, 2024

Backward view $\mathrm{TD}(\lambda)$

- Initialize value function for each state
- ullet At start of each episode, initialize eligibility trace for each state to E(s)=0
- \bullet For each transition $S_t=s\to S_{t+1}=s',$ giving reward $R_{t+1}=r,$ compute ordinary TD error

$$\delta_t = r + \gamma V(s') - V(s)$$

• Update eligibility trace

$$E_t(s) = E_t(s) + 1$$

ullet For every state s where $E_t(s)>0$ update

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$
$$E(s) \leftarrow \gamma \lambda E(s)$$

• See http://incompleteideas.net/book/ebook/node75.html

15 DTU Compute

Lecture 12

April, 202

$\lambda=0$ is equivalent TD(0)

DTU

• When $\lambda=0$ only the current state is updated:

$$E_t(s) = 1 \text{ if and only if } s = S_t$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

• This means $TD(\lambda)$ is equal to TD(0) when $\lambda = 0$

16 DTU Compute Lecture 12 26 April, 2024

Equivalence of forward/Backward $\mathrm{TD}(\lambda)$

Suppose a state $S_t = s$ is visited just once at time step t

Forward-view The change in value-function V(s) in the forward-view update is $\alpha(G_t^\lambda-V(S_t))$

Eligibility traces Implied update is:

- At t we change $E(S_t = s) = 1$
- In subsequent steps we iterate

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$

$$E(s) \leftarrow \gamma \lambda E(s)$$

- \bullet Total change to value function V(s) is therefore

$$\alpha \left(\delta_t + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^2 \delta_{t+2} + \ldots \right)$$

Are these two updates the same (is the red stuff equal)?

17 DTU Compute Lecture 12 26 April, 2024

Proof:

Recall
$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V\left(S_{t+n}\right)$$

$$\begin{split} G_t^{\lambda} - V(S_t) &= -V(S_t) + (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n} \\ &= -V(S_t) + \left(\sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n} \right) + \left(\sum_{n=1}^{\infty} -\lambda^n G_{t:t+n} \right) \\ &= -V(S_t) + \left(G_{t:t+1} + \sum_{n=2}^{\infty} \lambda^{n-1} G_{t:t+n} \right) + \left(\sum_{n=2}^{\infty} -\lambda^{n-1} G_{t:t+n-1} \right) \\ &= G_{t:t+1} - V(S_t) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(G_{t:t+n} - G_{t:t+n-1} \right) \end{split}$$

Recall that $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ then

$$G_{t:t+n} - G_{t:t+n-1} = \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}) - \gamma^{n-1} V(S_{t+n-1})$$

= $\gamma^{n-1} \delta_{t+n-1}$

18 DTU Compute Lecture 12 26 April, 2024

Proof II

19 DTU Compute

Forward/Backward TD

DTU

Suppose a state $S_t=s$ is visited just once at time step t

Forward-view The change in value-function V(s) in the forward-view update is $\alpha(G_t^\lambda - V(S_t))$

Eligibility traces Implied update is:

- ullet At t we change $E(S_t=s)=1$
- In subsequent steps we iterate

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$

 $E(s) \leftarrow \gamma \lambda E(s)$

- The last update means that at step t+n we have $E(s)=(\gamma\lambda)^n$
- \bullet Total change to value function $V(\boldsymbol{s})$ is therefore

$$\alpha \left(\delta_t + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^2 \delta_{t+2} + \ldots\right)$$

Same updates!

20 DTU Compute Lecture 12 26 April, 2024

Forward/Backward TD (Summary)

- ullet Forward view is just using G_t^λ is an estimate of return
- Forward/Backwards TD are equivalent
 - Both change the value function the same way
 - Forward-view just changes value-function during an episode

 $G_t^{\lambda} - V(S_t) = G_{t:t+1} - V(S_t) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(G_{t:t+n} - G_{t:t+n-1} \right)$

 $= (\gamma \lambda)^0 \delta_t + \sum_{n=2}^{\infty} (\gamma \lambda)^{n-1} \delta_{t+n-1}$ $= (\gamma \lambda)^0 \delta_t + (\gamma \lambda)^1 \delta_{t+1} + (\gamma \lambda)^2 \delta_{t+2} + \cdots$

 $= (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(\gamma^{n-1} \delta_{t+n-1} \right)$

- $TD(\lambda = 0)$ is equivalent to TD(0)
- $\bullet \ \mathrm{TD}(1)$ corresponds to MC

21 DTU Compute

Lecture 12 26 April, 2024

Contro

From last week: *n*-step Sarsa

DTU

Recall the decomposition:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n}$$

• As before:

$$\begin{split} q_{\pi}(s, a) &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | S_t = s, A_t = a] \\ &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n q_{\pi} (S_{t+n}, A_{t+n}) | S_t = s, A_t = a] \end{split}$$

 \bullet Therefore, the following n-step action-value return is an unbiased estimate of q_π

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q_\pi \left(S_{t+n}, A_{t+n} \right)$$

• Suggest the following bootstrap update of the action-value function

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha \left(q_{t}^{(n)} - Q\left(S_{t}, A_{t}\right)\right)$$

lecture_12_sarsa_nstep_open.py

22 DTU Compute

octure 12 26 A

Forward-view Sarsa weight given to the 3-step return $G_{t:t+3}$ is $(1-\lambda)\lambda^2$ weight given to G_t is λ^{T-t-1}

ullet Use weights to combine returns $q_{t:t+n}$

$$q_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

• For $t + n \ge T$ it is the case $q_{t:t+n} = G_t$:

$$q_t^{\lambda} = (1 - \lambda) \sum_{t=1}^{T-t-1} \lambda^{n-1} q_{t:t+n} + \lambda^{T-t-1} G_t$$

 \bullet We therefore obtain the following generalized update rule

Time

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha\left(q_{t}^{\lambda} - Q\left(S_{t}, A_{t}\right)\right)$$

23 DTU Compute Lecture 12 26 April, 2024

Control

Backward view Sarsa(λ)

ullet We once more introduce an eligibility trace E_t , updated as before:

$$E_t(s,a) = \left\{ \begin{array}{ll} \gamma \lambda E_{t-1}(s,a) + 1 & \text{if } s = s_t \text{ and } a = a_t; \\ \gamma \lambda E_{t-1}(s,a) & \text{otherwise.} \end{array} \right. \quad \text{for all } s,a$$

 \bullet Each each step, given (s,a,r,s^\prime) , update

$$\delta_{t} = R_{t+1} + \gamma Q\left(S_{t+1}, A_{t+1}\right) - Q\left(S_{t}, A_{t}\right)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_{t} E_{t}(s, a)$$

24 DTU Compute

Lecture 12 26 April, 2024

$Sarsa(\lambda)$ control algorithm (tabular version)

DTU

See http://incompleteideas.net/book/first/ebook/node77.html

```
Initialize Q(s,a) arbitrarily, for all s \in \mathcal{S}, a \in \mathcal{A}(s) Repeat (for each episode):
       E(s, a) = 0, for all s \in S, a \in A(s)
       Initialize S, A
     Initialize 5, A Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy) \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)

E(S, A) \leftarrow E(S, A) + 1
              For all s \in S, a \in A(s):
                 Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a)
E(s,a) \leftarrow \gamma \lambda E(s,a)
\leftarrow S'; A \leftarrow A'
       until S is terminal
```

25 DTU Compute Lecture 12 26 April, 2024

DTU Implied updates in the Open gridworld example Recall only terminal state has a reward of +1lecture_12_sarsa_open.py , ••• lecture_12_mc_open.py , lecture_12_sarsa_lambda_open.py

From last time: Feature vectors and linear representations

· Represent value function by a linear combination of features

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top} \mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^d$$

Where feature vector is defined as:

$$\mathbf{x}(s) = \begin{bmatrix} \mathbf{x}_1(s) \\ \vdots \\ \mathbf{x}_d(s) \end{bmatrix}$$

· The gradient is simply:

$$\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$$

In this case $\hat{q}(s, a, w) = x(s, a)^{\top}w$

27 DTU Compute Lecture 12

• TD learning

26 DTU Compute

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w})) \nabla \hat{v}(s, \boldsymbol{w})$$

Sarsa learning

$$\begin{split} q(s, a) \leftarrow q(s, a) + &\alpha \left(r + \gamma q(s', a') - q(s, a)\right) \\ \boldsymbol{w} \leftarrow \boldsymbol{w} &+ &\alpha \left(r + \gamma \hat{q}(s', a', \boldsymbol{w}) - \hat{q}(s, a, \boldsymbol{w})\right) \nabla \hat{q}(s, a, \boldsymbol{w}) \end{split}$$

Using a general estimator:

$$\begin{split} q(s, a) \leftarrow q(s, a) + &\alpha \left(\textbf{\textit{G}} - q(s, a) \right) \\ \textbf{\textit{w}} \leftarrow \textbf{\textit{w}} &+ &\alpha \left(\textbf{\textit{G}} - \hat{q}(s, a, \textbf{\textit{w}}) \right) \nabla \hat{q}(s, a, \textbf{\textit{w}}) \end{split}$$

28 DTU Compute 26 April, 2024

Forward and backward view

Assuming linear function approximators: $\nabla \hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)$

• Forward view Sarsa(λ) is exactly as before

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(\boldsymbol{G_t^{\lambda}} - \hat{q}(s, a, \boldsymbol{w}) \right) \nabla \hat{q}(s, a, \boldsymbol{w})$$

• Keep track of terms that include which gradient to get backward view of $Sarsa(\lambda)$:

$$\begin{aligned} & \delta_{t} = R_{t+1} + \gamma \hat{q}\left(S_{t+1}, A_{t+1}, \mathbf{w}_{t}\right) - \hat{q}\left(S_{t}, A_{t}, \mathbf{w}_{t}\right) \\ & \mathbf{z}_{t} = \gamma \lambda \mathbf{z}_{t-1} + \nabla \hat{q}(S_{t}, A_{t}, \mathbf{w}_{t}) \\ & \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + \alpha \delta_{t} \mathbf{z}_{t} \end{aligned}$$

- The gradient plays the role of state-action pairs visited. It is propagated into the future but attenuated by $\gamma\lambda$
- ullet A change in the past (gradient) which lead to a **poor** (or good) result δ_t will be penalized (promoted)
- · Forward/backward view equivalent in the linear case

29 DTU Compute Lecture 12 26 April, 2024

nethods and value-function approximations DTU Cliffwalk example Comparison of $\mathrm{Sarsa}(\lambda)$ and Sarsa on the cliffwalk example 0 -20 Accumulated Reward -40 -60 -80 (2x)CliffWalking-v0 SarsaL (2x)CliffWalking-v0_Sarsa -100 300 500 Episode (Note that results are somewhat sensitive to the to learning rate) 30 DTU Compute 26 April, 2024

Quiz: Exam problem spring 2023

DTU

- Which one of the following questions are correct? **a.** $\mathrm{TD}(\lambda)$ cannot be used with function approximators
- b. The role of the eligibility trace is to let reward obtained earlier in an episode affect the change in the value function later in the episode
- c. The eligibility trace cannot be negative
- d. The eligibility trace is a measure of the amount of reward obtained in a given state weighted by an exponential factor
- e. Don't know.

31 DTU Compute

methods and value-function approximations

Using binary features

DTU

Sarsa(λ) with binary features and linear function approximation for estimating $\mathbf{w}^{\top}\mathbf{x}\approx q_{\pi}$ or q_{*} Input: a function $\mathcal{F}(s, a)$ returning the set of (indices of) active features for s, aInput: a policy π (if estimating q_π) Algorithm parameters: step size $\alpha > 0$, trace decay rate $\lambda \in [0,1]$ Initialize: $\mathbf{w} = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$ (e.g., $\mathbf{w} = \mathbf{0}$), $\mathbf{z} = (z_1, \dots, z_d)^\top \in \mathbb{R}^d$ Initialize SChoose $A \sim \pi(\cdot|S)$ or ε -greedy according to $\hat{q}(S, \cdot, \mathbf{w})$ $\mathbf{z} \leftarrow \mathbf{0}$ Loop for each step of episode:
Take action A, observe R, S' $\delta \leftarrow R - \delta \leftarrow R - \mathbf{w}^{\top} \mathbf{x}$ Loop for in T(S, A): $\delta \leftarrow \delta - \mathbf{w}$; $z_1 \leftarrow z_1 + 1 \quad z \leftarrow z + x$ or $z_1 \leftarrow 1$ If S' is terminal then: $\mathbf{w} \leftarrow \mathbf{w} + c_1 \delta \mathbf{x}$ If S is terminal then: $\mathbf{w} \leftarrow \mathbf{w} + \Delta \delta \mathbf{z}$ Go to next episode $Choose \ d' \sim \pi(|S'|) \text{ or near greedily } \sim \hat{q}(S',\cdot,\mathbf{w})$ Loop for in $\mathcal{T}(S',A')$: $\delta \leftarrow \delta + \gamma w_i - \delta \leftarrow \delta + \gamma w^\top x'$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}$ $\mathbf{z} \leftarrow \gamma \lambda \mathbf{z}$ $S \leftarrow S', A \leftarrow A'$

Truncated, online and true online λ -return algorithms

(advanced)

ullet Recall the λ -return is defined as:

$$G_{t}^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t}$$

- ullet Each G_t is an estimate of the return and the sum of the weights is 1
- ullet More generally the **truncated** λ -return estimator is

$$G_{t:h}^{\lambda} = (1 - \lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \quad 0 \le t < h \le T$$

33 DTU Compute

DTU

26 April, 2024

methods and value-function approximations

Using the estimator

32 DTU Compute

26 April, 2024

Lecture 12

ullet Recall the forward-view $\mathrm{TD}(\lambda)$ algorithm:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\lambda} - V(S_t))$$

• The **truncated** λ return fixes h=n and do:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_{t:t+n}^{\lambda} - V(S_t))$$

Or as weight updates

$$\boldsymbol{w}_{t+n} = \boldsymbol{w}_{t+n-1} + \alpha \left(G_{t:t+n}^{\lambda} - \hat{v}(S_t, \boldsymbol{w}_{t+n-1}) \right) \nabla \hat{v}(S_t, \boldsymbol{w}_{t+n-1})$$

• This requires a fixed n and that we store previous results. Can we do better?

34 DTU Compute

methods and value-function approximations

Online λ -return

 $G_{t:h}^{\lambda} = (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \quad 0 \leq t < h \leq T$

ullet Once we have observed h steps of an episode, we can evaluate

$$G_{0:h}^{\lambda}, G_{1:h}^{\lambda}, \dots, G_{h-1:h}^{\lambda}$$

- ullet Online λ -return: After h steps, perform h updates corresponding to all h returns
- ullet Repeat each time h is increased

$$h = 1$$
: $\mathbf{w}_{1}^{1} \doteq \mathbf{w}_{0}^{1} + \alpha \left[G_{0:1}^{\lambda} - \hat{v}(S_{0}, \mathbf{w}_{0}^{1})\right] \nabla \hat{v}(S_{0}, \mathbf{w}_{0}^{1})$,

$$\begin{split} h = 2: \quad \mathbf{w}_1^2 &\doteq \mathbf{w}_0^2 + \alpha \left[G_{0:2}^\lambda - \hat{v}(S_0, \mathbf{w}_0^2) \right] \nabla \hat{v}(S_0, \mathbf{w}_0^2), \\ \mathbf{w}_2^2 &\doteq \mathbf{w}_1^2 + \alpha \left[G_{1:2}^\lambda - \hat{v}(S_1, \mathbf{w}_1^2) \right] \nabla \hat{v}(S_1, \mathbf{w}_1^2), \end{split}$$

$$\mathbf{w}_{1}^{2} = \mathbf{w}_{0} + \alpha \left[G_{0;2} - v(S_{0}, \mathbf{w}_{0})\right] \nabla v(S_{0}, \mathbf{w}_{0})$$

 $\mathbf{w}_{0}^{2} \doteq \mathbf{w}_{1}^{2} + \alpha \left[G_{0;0}^{\lambda} - \hat{v}(S_{1}, \mathbf{w}_{0}^{2})\right] \nabla \hat{v}(S_{1}, \mathbf{w}_{0}^{2})$

$$h = 3: \quad \mathbf{w}_1^3 \doteq \mathbf{w}_0^3 + \alpha \left[G_{0:3}^{\lambda} - \hat{v}(S_0, \mathbf{w}_0^3) \right] \nabla \hat{v}(S_0, \mathbf{w}_0^3),$$

$$\mathbf{w}_{2}^{3} \doteq \mathbf{w}_{1}^{3} + \alpha \left[G_{1:3}^{3} - \hat{v}(S_{1}, \mathbf{w}_{1}^{3}) \right] \nabla \hat{v}(S_{1}, \mathbf{w}_{1}^{3})$$

$$\mathbf{w}_{2}^{3} \doteq \mathbf{w}_{1}^{3} + \alpha \left[G_{1:3}^{\lambda} - \hat{v}(S_{1}, \mathbf{w}_{1}^{3}) \right] \nabla \hat{v}(S_{1}, \mathbf{w}_{1}^{3})$$

$$\mathbf{w}_{3}^{3} \doteq \mathbf{w}_{2}^{3} + \alpha \left[G_{2:3}^{\lambda} - \hat{v}(S_{2}, \mathbf{w}_{2}^{3}) \right] \nabla \hat{v}(S_{2}, \mathbf{w}_{2}^{3})$$

• I.e. for each new step $h-1 \to h$ repeat $t=0,\ldots,h-1$:

$$\boldsymbol{w}_{t+1}^{h} = \boldsymbol{w}_{t}^{h} + \alpha \left[G_{t:h}^{\lambda} - \hat{v}(S_{t}, \boldsymbol{w}_{t}^{h}) \right] \nabla \hat{v}(S_{t}, \boldsymbol{w}_{t}^{h})$$

35 DTU Compute

methods and value-function approximations

True online $TD(\lambda)$

- \bullet Online $\mathrm{TD}(\lambda)$ is computationally very wasteful
- \bullet For linear function approximators online $\mathrm{TD}(\lambda)$ allows a backwards view known as True online $TD(\lambda)$

$$\begin{aligned} \boldsymbol{w}_{t+1} &= \boldsymbol{w}_t + \alpha \delta_t \boldsymbol{z}_t + \alpha (\boldsymbol{w}_t^{\top} \boldsymbol{x}_t - \boldsymbol{w}_{t-1}^{\top} \boldsymbol{x}_t) (\boldsymbol{z}_t - \boldsymbol{x}_t) \\ \boldsymbol{z}_t &= \gamma \lambda \boldsymbol{z}_{t-1} + (1 - \alpha \gamma \lambda \boldsymbol{z}_{t-1}^{\top} \boldsymbol{x}_t) \boldsymbol{x}_t \end{aligned}$$

• The control algorithm is true online $Sarsa(\lambda)$

36 DTU Compute

Lecture 12

26 April, 2024

