
02465: Introduction to reinforcement learning and control

Q-learning and deep-Q learning

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
2 February

2 Dynamical Programming
9 February

3 DP reformulations and introduction to
Control
16 February

Control

4 Discretization and PID control
23 February

5 Direct methods and control by
optimization
1 March

6 Linear-quadratic problems in control
8 March

7 Linearization and iterative LQR
15 March

Reinforcement learning

8 Exploration and Bandits
22 March

9 Policy and value iteration
5 April

10 Monte-carlo methods and TD learning
12 April

11 Model-Free Control with tabular and
linear methods
19 April

12 Eligibility traces and value-function
approximations
26 April

13 Q-learning and deep-Q learning
3 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 13 3 May, 2024

Reading material:
• [SB18, Chapter 6.7-6.9; 8-8.4; 16-16.2; 16.5; 16.6]

Learning Objectives
• Double-Q learning
• Dyna-Q and the replay buffer
• Deep-Q learning

3 DTU Compute Lecture 13 3 May, 2024

Housekeeping

• Unofficial exam Q/A about one week before the exam (the 20th?). Please put
wishes on blackboard.
• I have added a survey on the course (what went well/ less well /what can be

improved). You can find it in the menu to the right on DTU Learn.
• I have updated the video on preparing for the exam,

https://www2.compute.dtu.dk/courses/02465/exam.html, and uploaded
solutions to the previous exams.
• Exam is planned to be in English as last year (only one language). Please let me

know before Tuesday the 7th if this is not acceptable.
• Test exam at https://eksamen.dtu.dk/studerende/proeve/7482/

tilmeld/3a1b13368489ef57c103c1e4642d6ff2 (Hopefully this works!)

4 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Recap: Q-learning

• Bellman optimality condition:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)|St = s, At = a

]

• Theorem: q∗ satisfies the above recursions if (and only if) it corresponds to the
optimal value function
• Value iteration: Replace q∗ arbitrary Q and iterate:

Q(s, a)← E
[
Rt+1 + γ max

a′
Q(St+1, a′)|St = s, At = a

]

• Theorem: Q will converge to q∗

• Q-learning: Given (St, At, Rt+1, St+1) = (s, a, r, s′) transition, update

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]

Uses that red expression is a biased but consistent estimate of Q

5 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Q-learning

Convergence of Q-learning
• All s, a pairs visited infinitely often
• Robbins-Monro sequence of step-sizes αt

∞∑

t=1
αt =∞,

∞∑

t=1
α2

t <∞

6 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Learning and planning

• Value iteration uses a model of the environment to plan a policy

Q(s, a)← E
[
Rt+1 + γ max

a′
Q(St+1, a′)|St = s, At = a

]

• Q-learning uses samples from the environment (s, a, r, s′) to learn a policy

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]

• Both uses value functions and backups
• Can we combine these ideas?

7 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Learning and planning

• A distributional model is an estimate of the MDP p(s′, r|s, a)
• A sample model is a mechanism to generate samples (s, a, r, s′) from the MDP

(weaker assumption)
• Idea: Learn sample model and use it to improve value function by regular backups
• Allows re-use of data for faster convergence (sample efficiency)

8 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Tabular planning

9 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Dyna-Q planning

10 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Dyna-Q on deterministic Maze environment

0 10 20 30 40 50
Episode

0

100

200

300

400

500

Le
ng

th

Dyna Q on simple Maze (Figure 8.2)
(12x)bmaze_QLearner_0.95_0.1_0.1
(12x)bmaze_Sarsa0.95_0.1_0.1
(12x)bmaze_SarsaLambda_0.95_0.1_0.1_0.9
(12x)bmaze_DynaQ_0.95_0.1_0.1_5
(12x)bmaze_DynaQ_0.95_0.1_0.1_50

s lecture_13_Q_maze.py , s lecture_13_dyna_q_5_maze.py ,
s lecture_13_sarsa_lambda_maze.py11 DTU Compute Lecture 13 3 May, 2024

Q-Learning
Dyna-Q implementation

• The model is simply a list of experience (a replay buffer)
• Deterministic assumption not used

12 DTU Compute Lecture 13 3 May, 2024

Double-Q learning
Double-Q learning

• Target for the Q-values can be considered noisy (random)

r + max
a′

Q(s′, a′).

• Q-update is

Q(s, a)← Q(s, a) + α
(

r + max
a′

Q(s′, a′)−Q(s, a)
)

• By chance some of the Q(s′, a′) values are likely to be unusually large
• This leads to over-estimate Q(s, a):

E[max(X1, X2)] ≥ max(E[X1],E[X2])

• Conclusion:
• Q-values systematically over-estimated
• the worse the estimate of a state, the more we will prefer it

13 DTU Compute Lecture 13 3 May, 2024

Double-Q learning
Double-Q learning

Given transition (St, At, Rt+1, St+1) = (s, a, r, s′)

Q (s, a)← Q (s, a) + α

[
r + γmax

a′
Q

(
s′, a′) Q

(
s′, arg max

a
Q

(
s′, a

))
Q2

(
s′, arg max

a
Q

(
s′, a

))
−Q (s, a)

]

• Where Q2 is another Q-function
• Q2 is independent of Q which avoids systematic over-estimation

14 DTU Compute Lecture 13 3 May, 2024

Double-Q learning
Double-Q learning

• Twice as slow to learn

15 DTU Compute Lecture 13 3 May, 2024

Double-Q learning
Double-Q learning on bias-example environment

0 50 100 150 200 250 300
Episode

1.0

1.2

1.4

1.6

1.8

2.0

Le
ng

th

Double-Q learning on Maximization-Bias ex. (Figure 6.5)
(100x)bias_QLearner_1.0_0.1_0.1
(100x)bias_Sarsa1_0.1_0.1
(100x)bias_TabularDoubleQ_1.0_0.1_0.1

16 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Q-learning with function approximators

• We want an approximation of the Q-values Q(s, a)
• Assume y = q̂ϕ(s) is a vector of dimension | A | such that

ya ≈ Q(s, a)

is our approximation of the Q-value
• In practice, q̂ϕ : Rd 7→ R| A | is a deep network

• Input-dimension is dimension of each state s ∈ S = Rd

• Output dimension | A |

17 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Q-learning with function approximators

Regular Q-learning:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]

Regular Q-learning with function approximators
• Given (St, At, Rt+1, St+1) = (s, a, r, s′) update:

ϕ← ϕ + α
(

r + γ max
a′

q̂ϕ(s′, a′)− q̂ϕ(s, a)
)
∇ϕq̂ϕ(s, a)

• Defining y = r + γ maxa′ q̂ϕ(s′, a′) this can be written as

ϕ← ϕ− α
1
2∇ϕ (y − q̂ϕ(s, a))2

18 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Fitted Q-iteration algorithm

Fitted Q-iteration algorithm
1 At step t observe (st, at, rt+1, st+1)

2 yt = rt+1 + γ maxa′ q̂ϕ(st+1, a′)

3 Repeat fit step one or more times:
• ϕ← ϕ− α∇ϕ

[
1
2 (yt − q̂ϕ(st, at))2

]

• The use of a single sample gives a high variance in the gradient estimate
• The samples are only used once

19 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Q-learning with a replay buffer

Initialize a replay buffer B
Q-learning with a replay buffer
1 At step t observe (st, at, rt+1, st+1) and add it to B
2 Repeat K times:

1 Sample a batch (si, ai, ri, s′
i)B

i=1 from B
2 Set yi = ri + γ maxa′ q̂ϕ(s′

i, a′)
3 ϕ← ϕ− α∇ϕ

[
1

2B

∑B
i=1 (yi − q̂ϕ(si, ai))2

]

• Similar to dyna-Q
• Lower gradient variance, quicker convergence
• Replay buffer should be large (thousands to a few millions)
• You can implement this in the exercises

20 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Basic deep Q learning on Cartpole

0 25 50 75 100 125 150 175 200
Episode

25

50

75

100

125

150

175

200

A
cc

um
ul

at
ed

 R
ew

ar
d

Condition
(28x)cartpole_dqn_C

21 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
An issue with deep Q learning

• Consider the target
1 y = rt+1 + γ maxa′ q̂ϕ(st+1, a′)
2 ϕ← ϕ− α∇ϕ

[
1
2 (y − q̂ϕ(s, a))2

]

• We don’t compute gradients through y

• This is to a great extend why deep-Q sometimes do not converge: We adapt
towards y, without taking into account that y changes during the adaption
• Idea 1: Use an alternative weight network ϕ′

y = rt+1 + γ max
a′

q̂ϕ′(st+1, a′)

• Idea 2: Let ϕ′ be an old version of ϕ

22 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Deep-Q learning

Initialize B and make a copy ϕ′ ← ϕ of the weights

Deep-Q learning
1 At step t observe (st, at, rt+1, st+1) and add it to B
2 Repeat K times:

1 Sample a batch (si, ai, ri, s′
i)B

i=1 from B
2 Set yi = ri + γ maxa′ q̂ϕ′(s′

i, a′)
3 ϕ← ϕ− α∇ϕ

[
1

2B

∑B
i=1 (yi − q̂ϕ(si, ai))2

]

3 Update ϕ′ ← ϕ′ + τ(ϕ− ϕ′) (Slow changes, e.g. τ = 0.08 or less)

• Can we also address the over-estimation problem of the Q-values?

23 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Double-Q learning

Initialize B and make a copy ϕ′ ← ϕ of the weights

Double-Q learning
1 At step t observe (st, at, rt+1, st+1) and add it to B
2 Repeat K times:

1 Sample a batch (si, ai, ri, s′
i)B

i=1 from B
2 Set yi = ri + γq̂ϕ′(s′

i, arg maxa′ q̂ϕ(s′, a′))
3 ϕ← ϕ− α∇ϕ

[
1

2B

∑B
i=1 (yi − q̂ϕ(si, ai))2

]

3 Update ϕ′ ← ϕ′ + τ(ϕ− ϕ′)

• Double-Q: Select actions according to ϕ, but evaluate according to ϕ′

•We will implement this in the exercises

24 DTU Compute Lecture 13 3 May, 2024

Q-learning and function approximators
Double-deep Q learning on Cartpole

0 25 50 75 100 125 150 175 200
Episode

25

50

75

100

125

150

175

200

A
cc

um
ul

at
ed

 R
ew

ar
d

Condition
(28x)cartpole_dqn_C
(23x)cartpole_double_dqn_C

25 DTU Compute Lecture 13 3 May, 2024

Implementation
The buffer

The buffer is a list with a sample function

1 # deepq_agent.py
2 self.memory = BasicBuffer(replay_buffer_size) if buffer is None else buffer
3 self.memory.push(s, a, r, sp, done) # save current observation
4 """ First we sample from replay buffer. Returns numpy Arrays of dimension
5 > [self.batch_size] x [...]]
6 for instance 'a' will be of dimension [self.batch_size x 1].
7 """
8 s,a,r,sp,done = self.memory.sample(self.batch_size)

First dimension is batch dimension

(batch_size ×d)

26 DTU Compute Lecture 13 3 May, 2024

Implementation
The network
Implemented in separate class

1 # irlc/ex13/lecture_12_examples.py
2 # Initialize a network class
3 self.Q = Network(env, trainable=True) # initialize the network
4 """ Assuming s has dimension [batch_dim x d] this returns a float numpy Array
5 array of Q-values of [batch_dim x actions], such that qvals[i,a] = Q(s_i,a) """
6 qvals = self.Q(s)
7 actions = env.action_space.n # number of actions
8 """ Assume we initialize target to be of dimension [batch_dim x actions]
9 > target = [batch_dim x actions]

10 The following function will fit the weights in self.Q by minimizing
11 > ||self.Q(s)-target||^2
12 (averaged over Batch dimension) using one step of gradient descent
13 """
14 self.Q.fit(s, target)

I.e. select target appropriately to implement loss

1
B

B∑

i=1
(q̂ϕ(si, ai)− yi)2

27 DTU Compute Lecture 13 3 May, 2024

Implementation
The network (for double-Q)

1 # irlc/ex13/lecture_12_examples.py
2 self.Q2 = Network(env, trainable=True)
3 """ Update weights in self.Q2 (target, phi') towards those in Q (source, phi)
4 with a factor of tau. tau=0 is no change, tau=1 means overwriting weights
5 (useful for initialization) """
6 self.Q2.update_Phi(Q2, tau=0.1)

Updates weights ϕ′ in Q2 towards ϕ in Q

ϕ′ = ϕ′ + τ(ϕ− ϕ′)

28 DTU Compute Lecture 13 3 May, 2024

Implementation
Q-learning, additional tricks

• Parameters: Decrease exploration rate εt and learning rate αt through training
• Networks

• Clip gradients or use Huber loss
• Batch normalization
• Tune parameters; linear → shallow → deep

• Methods:
• Double-Q learning always a good idea
• Replay buffer always a good idea
• Prioritizing samples (PER) improves convergence speed
• Check out Rainbow for current(ish) state of the art(ish) [HMVH+18]

• Lots of training and results highly variable across seeds

29 DTU Compute Lecture 13 3 May, 2024

FIN!

30 DTU Compute Lecture 13 3 May, 2024

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver.
Rainbow: Combining improvements in deep reinforcement learning.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

31 DTU Compute Lecture 13 3 May, 2024

