=
=
=

n

02465: Introduction to reinforcement learning and control

Q-learning and deep-Q learning

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

AL
)(_\u,\):f(f%)}”h) 8

DTU Compute
Depart t of A

lied Mathematics and Computer Science

=]
=
=

i

Reading material:
® [SB18, Chapter 6.7-6.9; 8-8.4; 16-16.2; 16.5; 16.6]

Learning Objectives

® Double-Q learning
® Dyna-Q and the replay buffer
® Deep-Q learning

3 DTU Compute Lecture 13 3 May, 2024

=]
=
=

"

Recap: ()-learning
® Bellman optimality condition:
qe(s,a) = E |Ryy1 +ymax ¢ (Sp41,d") Sy = 8,4, = a
a’

® Theorem: ¢. satisfies the above recursions if (and only if) it corresponds to the
optimal value function

® Value iteration: Replace ¢, arbitrary @) and iterate:

Q(s,a) + E [R,H +ymax Q(Sii1,d")|Sy = 5, Ay = a}

® Theorem: @ will converge to q.

® Q-learning: Given (S;, A, Ri41,S14+1) = (s,a,r, s') transition, update
Q(s,a) + Q(s,a) + a [r +ymaxQ(s',a") — Q(s, a)]
Uses that red expression is a biased but consistent estimate of @

5 DTU Compute Lecture 13 3 May, 2024

Lecture Schedule

Dynamical programming

@ The finite-horizon decision problem
2 February

@ Dynamical Programming
9 February

© DP reformulations and introduction to
Control
16 February

Control

@ Discretization and PID control
23 February

@ Direct methods and control by
optimization
1 March

@ Linear-quadratic problems in control
8 March

@ Linearization and iterative LQR

=
=
=

n

Reinforcement learning
@ Exploration and Bandits
22 March
© Policy and value iteration
5 April
@ Monte-carlo methods and TD learning
12 April
® Model-Free Control with tabular and
linear methods
19 April
@ Eligibility traces and value-function
approximations
26 April
& Q-learning and deep-Q learning

3 May

15 March
Syllabus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 13 3 May, 2024
DU
. -
Housekeeping =

® Unofficial exam Q/A about one week before the exam (the 20th?). Please put

wishes on blackboard.

® | have added a survey on the course (what went well/ less well /what can be
improved). You can find it in the menu to the right on DTU Learn.

® | have updated the video on preparing for the exam,
https://www2.compute.dtu.dk/courses/02465/exam.html, and uploaded

solutions to the previous exams.

® Exam is planned to be in English as last year (only one language). Please let me
know before Tuesday the 7th if this is not acceptable.

® Test exam at https://eksamen.dtu.dk/studerende/proeve/7482/
tilmeld/3alb13368489ef57c103c1e4642d6££2 (Hopefully this works!)

4 DTU Compute Lecture 13 3 May, 2024
DTU
- >
Q-learning =

Q-learning (off-policy TD control) for estimating

Loop for each episode:
Initialize S
Loop for each step of episode:

Take action A, observe R, S’

S« S

until S is terminal

Algorithm parameters: step size o € (0,1], small € > 0
Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) = 0

Choose A from S using policy derived from Q (e.g., e-greedy)

Q(S,A) «+ Q(S,A) + a [R + ymax, Q(S",a) — Q(S, A)]

Convergence of Q-learning

® All s,a pairs visited infinitely often

® Robbins-Monro sequence of step-sizes oy

M2

t

1

oo
at = 00, E al < oo
t=1

6 DTU Compute

Lecture 13 3 May, 2024

=
—
=

Learning and planning

i

A distributional model is an estimate of the MDP p(s’,r|s,a)

® A sample model is a mechanism to generate samples (s, a,r,s’) from the MDP
(weaker assumption)

® |dea: Learn sample model and use it to improve value function by regular backups

® Allows re-use of data for faster convergence (sample efficiency)

8 DTU Compute Lecture 13 3 May, 2024

DTU
. . >
Learning and planning =
® Value iteration uses a model of the environment to plan a policy
Q(s,a) + E [RH-I + 7 max Q(Si41,0d")|S; =5, A1 = a}
a
® (Q-learning uses samples from the environment (s, a,r, s') to learn a policy
Q(s,a) + Q(s,a) + [r +ymaxQ(s',a") — Q(s, u:)]
a
® Both uses value functions and backups
® Can we combine these ideas?
7 DTU Compute Lecture 13 3 May, 2024
DTU
. >
Tabular planning =

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S”:
Q(S, A) « Q(S, A) + a[R + ymax, Q(S', a) — Q(S, A)]

=
=
=

"

Dyna-Q planning

Initialize Q(s,a) and Model(s,a) for all s € $ and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A « e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S.A) + Q(S. A) + a[R + ymax, Q(S',a) — Q(S. A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S « random previously observed state
A + random action previously taken in S
R, S’ < Model(S, A)
Q(S, A) « Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]

10 DTU Compute Lecture 13 3 May, 2024

9 DTU Compute Lecture 13 3 May, 2024
DU
.. . - >
Dyna-Q on deterministic Maze environment s
[G
s

actions

[

Dyna Q on simple Maze (Figure 8.2)

500 1
\‘ —— (12x)bmaze_QLearner_0.95_0.1 0.1
| (12x)bmaze_Sarsa0.95_0.1 0.1
400 —— (12x)bmaze_Sarsalambda_0.95_0.1_0.1_0.9
—— (12x)bmaze_DynaQ_0.95_0.1_0.1_5
(12x)bmaze_DynaQ_0.95_0.1_0.1_50
< 300
S
=
c
8
200
100
0
0 10 20 30 40 50
Episode

(+ lecture_13_Q_maze.py , (+ lecture_13_dyna_q_5_maze.py ,
O QE¢ ereute3_sarsa_lambda_maze.py Lecture 13 3 May, 2024

=]
=
=

i

Dyna-Q implementation

Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A « e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S,A) « Q(S,A4) + [R +ymax, Q(S’,a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:

S « random previously observed state

A + random action previously taken in S

R,S" « Model(S, A)

Q(S.A) « Q(S.A) + [R + ymax, Q(S’,a) — Q(S, A)]

® The model is simply a list of experience (a replay buffer)

® Deterministic assumption not used

12 DTU Compute Lecture 13 3 May, 2024

=
=
=

n

Double-() learning
® Target for the Q-values can be considered noisy (random)
7+ max Q(s',d).
® Q-update is
Q(s,a) + Q(s,a) + « (7' + max Q(s',a") — Q(s.a))
® By chance some of the Q(s’,a’) values are likely to be unusually large

® This leads to over-estimate Q(s,a):

E[max (X1, X2)] > max(E[X1], E[X3])

® Conclusion:

® (Q-values systematically over-estimated
® the worse the estimate of a state, the more we will prefer it

13 DTU Compute Lecture 13 3 May, 2024

=
=
=

n

Double-@ learning

Given transition (S¢, Ay, Ri+1, St+1) = (s,a,7,8")

=]
=
=

i

Double-() learning

Double Q-learning, for imating Q; ~ (

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q;(s,a) and Q2(s,a), for all s € 8%, a € A(s), such that Q(terminal,-) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q; + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Q1(S,A) « Q1(S,A) + « (17 + Q2 (S, argmax, Q1(5’,a)) — Q1(S, A))
else:
Qa(S, A) « Qa(S, A) + u(R +7Q1 (S, argmax, Qx(S",a)) — Qs (S, A))
S+ S
until S is terminal

® Twice as slow to learn

15 DTU Compute Lecture 13 3 May, 2024

=]
=
=

"

(Q-learning with function approximators

— §(s,a;,w)

- (i(s7 a"H W)

® We want an approximation of the Q-values Q(s, a)

® Assume y = {,(s) is a vector of dimension | A| such that
Yo ~ Q(s,a)
is our approximation of the Q-value

® In practice, g, : R? +— R4 is a deep network

© Input-dimension is dimension of each state s € S = R?
® Output dimension | A |

17 DTU Compute Lecture 13 3 May, 2024

Q(s,0) < Q(s,a) + o [r +ymaxQ (s',a') Q (s’, arg maxQ (s, a)) Q2 (s’f arg
a a
® Where (), is another Q-function
® (), is independent of @ which avoids systematic over-estimation
14 DTU Compute Lecture 13 3 May, 2024
DTU
Double-() learning on bias-example environment s
N(—O.l,]) 10 actions with
Normal reward Start
.Ae 0 .
’ left right
Trajectory length 2 Trajectory length 1
(average reward -0.1) (average reward 0)
20 Double-Q learning on Maximization-Bias ex. (Figure 6.5)
—— (100x)bias_QLearner_1.0_0.1_0.1
(100x)bias_Sarsal_0.1_0.1
1.8 —— (100x)bias_TabularDoubleQ 1.0 0.1 0.1
<16
)
c
3
1.4
1.2
16 DTUl@mpute Lecture 13 3 May, 2024
0 50 100 150 200 250 300
DTU
- . - - >
(Q-learning with function approximators P =3
Regular Q-learning:
Q(s,a) + Q(s,a) + [7' +ymax Q(s',a') — Q(s, a)]
a
Regular Q-learning with function approximators
® Given (Sy, A, Riy1,S14+1) = (s,a,r, s') update:
d—d+a (7' +ymax Gy (s',a’) — (jé(s.(z)) Vdo(s, a)
a’
® Defining y = r + ymax, §4(s’,a’) this can be written as
, 1 . 2
¢ ¢—azVe(y—ds(s,a)
18 DTU Compute Lecture 13 3 May, 2024

=
=
=

Fitted Q-iteration algorithm

n

Fitted Q-iteration algorithm

@ At step ¢ observe (¢, as, Tt41, St41)
@y = 1141 +ymaxy §p(si41,a")
© Repeat fit step one or more times:

Ch—¢—avy sy — é(p(shat))Q]

® The use of a single sample gives a high variance in the gradient estimate

® The samples are only used once

=
=
=

Q@-learning with a replay buffer

n

Initialize a replay buffer B

Q-learning with a replay buffer

@ At step ¢ observe (s;,ay,7441,5:+1) and add it to B
@ Repeat K times:

@ Sample a batch (s;,a;,7;,5.)2 | from B
@ Set y; = 1; + ymaxy §p(sh,a’)

@0 6—av, [% S8 (i — do(sirai))?

S5y

® Similar to dyna-Q
® Lower gradient variance, quicker convergence
® Replay buffer should be large (thousands to a few millions)

® You can implement this in the exercises

19 DTU Compute Lecture 13 3 May, 2024
DU
. . -
Basic deep @ learning on Cartpole =
200 Condition
175 (28x)cartpole_dqn_C
°
5 150
=
Q
© 125
o
2
T 100
=}
E
375
O
<
50
25
0 25 50 75 100 125 150 175 200
Episode
21 DTU Compute Lecture 13 3 May, 2024
DU
. -
Deep-(Q learning =

Initialize B and make a copy ¢’ < ¢ of the weights

Deep-(Q learning

@ At step t observe (s;,as, 7141, S1+1) and add it to B
@ Repeat K times:

@ Sample a batch (s;, a;, 74, 5,)2 | from B
@ Set y; = r; + ymaxy Gy (s, a)
Q) —o—aV, [% S (0 — do(si i)

© Update ¢/ < ¢/ + 7(¢ — ¢') (Slow changes, e.g. 7 = 0.08 or less)

® Can we also address the over-estimation problem of the Q-values?

23 DTU Compute Lecture 13 3 May, 2024

20 DTU Compute Lecture 13 3 May, 2024
DTU
An issue with deep @ learning =
® Consider the target
Oy =i +ymaxe §o(sei1,a’)
, . . 2
@b d—aV, [% (y — do(s,a))]
® We don’t compute gradients through vy
® This is to a great extend why deep-Q sometimes do not converge: We adapt
towards y, without taking into account that y changes during the adaption
® |dea 1: Use an alternative weight network ¢’
Y =T+ max Gor (s141,0)
® |dea 2: Let ¢’ be an old version of ¢
22 DTU Compute Lecture 13 3 May, 2024
DTU
. -
Double-@ learning =

Initialize B and make a copy ¢’ < ¢ of the weights

Double-Q learning

@ At step ¢ observe (sy, ay, 7441, 5:+1) and add it to B
@ Repeat K times:

@ Sample a batch (s;, a;, 74, 5.)2 | from B

@ Set y; = r; + Y4y (s}, argmax,, G4(s',a’)
. B N 2

O p—aV, [ﬁ Sict (Wi — Qp(sivai))

@ Update ¢/ « ¢ +7(¢p — ¢')

® Double-Q: Select actions according to ¢, but evaluate according to ¢’

® We will implement this in the exercises

24 DTU Compute Lecture 13 3 May, 2024

=
=
=

PRSI

=
—
=

The buffer

i

The buffer is a list with a sample function

deepg_agent.py
self.memory = BasicBuffer(replay_buffer_size) if buffer is None else buffer
self.memory.push(s, a, r, sp, done) # save current observation

"nn First we sample from replay buffer. Returns numpy Arrays of dimension

> [self.batch_size] z [...

for instance ‘a’ will be of dimension [self.batch_size z 1].

,a,r,5p,done = self.memory.sample(self.batch_size)

First dimension is batch dimension

(vatch_size xd)

26 DTU Compute Lecture 13 3 May, 2024

Double-deep () learning on Cartpole =

200 Condition A

pA!
175 — (28x)cartpole_dan_C ,\JW\/“W)
(23x)cartpole_double_dqgn_C (

el
5 150
=
O
125
o
2
T 100
=3
E
3 75
(5]
<

50

25

0 25 50 75 100 125 150 175 200
Episode
25 DTU Compute Lecture 13 3 May, 2024
DTU
-

The network =

Implemented in separate class

irlc/ex13/lecture_12_ezamples.py
Initialize a network class
self.Q = Network(env, trainable=True) # initialize the network
"t Assuming s has dimension [batch_dim z d] this returns a float numpy Array
array of Q-values of [batch_dim z actions], such that quals[i,a] = Q(s_i,a) """
quals = self.Q(s)
actions = env.action_space.n # number of actions
nnn Assume we initialize target to be of dimension [batch_dim z actions]
> target = [batch_dim = actions]
The following function will fit the weights in self.Q by minimizing
> [/self.Q(s)-target/] 2
(averaged over Batch dimension) using one step of gradient descent

win

self.Q.fit(s, target)

l.e. select target appropriately to implement loss

1B
5 S (ds(si, i) — wi)®

i=1

27 DTU Compute Lecture 13 3 May, 2024

AW

o

=
=
=

"

The network (for double-Q)

irlc/ex13/lecture_12_ezamples.py
self.Q2 = Network(env, trainable=True)
""" Update weights in self.Q2 (target, phi') towards those in (source, phi)
with a factor of tau. tau=0 is no change, tau=1 means overwriting weights
(useful for initialization) """
self.Q2.update_Phi(Q2, tau=0.1)

Updates weights ¢’ in g2 towards ¢ in q

¢ =¢" +7(¢—¢)

28 DTU Compute Lecture 13 3 May, 2024

=]
=
=

"

()-learning, additional tricks

® Parameters: Decrease exploration rate €, and learning rate a; through training
® Networks

® Clip gradients or use Huber loss
® Batch normalization
® Tune parameters; linear — shallow — deep

® Methods:

® Double-Q learning always a good idea

® Replay buffer always a good idea

® Prioritizing samples (PER) improves convergence speed

® Check out Rainbow for current(ish) state of the art(ish) [HMVH* 18]

® Lots of training and results highly variable across seeds

29 DTU Compute Lecture 13 3 May, 2024

=]
=
=

i

FIN!

30 DTU Compute Lecture 13 3 May, 2024

=
=
=

n

[3 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver.

Rainbow: Combining improvements in deep reinforcement learning.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[@ Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

31 DTU Compute Lecture 13 3 May, 2024

