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Reading material:

® [Her24, Chapter 5-6.2] Formalization of the decision problem and the DP
algorithm

Learning Objectives
® Dynamical Programming

® Principle of optimality

® Optimal policy/value function using DP
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Find shortest path from starting node z¢p = 2 to final node t =5
State Current node x) = 4
Actions next possible node: uy € {1,2,...,5}
Dynamics Deterministic, known

Tpy1 = flop =4,u, =5)=5
Cost Sum of edge weights

= 0 ifay=t
Z gy oy + .
=0 oo otherwise

We want optimal path {2,3,4,5}
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Lecture Schedule =
Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits
2 February 22 March
® Dynamical Programming © Policy and value iteration
9 February 5 April
© DP reformulations and introduction to @ Monte-carlo methods and TD learning
Control 12 April i
16 February @® Model-Free Control with tabular and
Control linear methods
@ Discretization and PID control 10 April .
23 February ® Eligibility traces and value-function
@ Direct methods and control by approximations
optimization 26 Aprl .
1 March ® Q-learning and deep-Q learning
@ Linear-quadratic problems in control 3 May
8 March
@ Linearization and iterative LQR
15 March
Syllabus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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The decision problem =
Observation
501 mterpreter
& The robot
If .
/\\\
\Mstate "
State The configuration of the environment z
Action What we do u
Cost/reward A number which depends on the state and action
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Inventory control Buy up =3 Buy u; =1 =
Sell wy =1 .. Sellw; =2 | @
29 =0 ) =2 T9 =1

® \We order a quantity of an item at period k£ = 0,..., N so as to meet a
stochastic demand

xy, stock available at the beginning of the kth period,
u, > 0 stock ordered (and immediately delivered) at the beginning of the
kth period.
wy, > 0 Demand during the k'th period

® Dynamics: xj41 = Tp + up — wi

® Cost per new unit ¢; cost to hold zj. units is 7(x)
r(zk) + cup

® Select actions uyg, ..., un—1 to minimize cost

We want proven optimal rule for ordering
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Basic control setup: Environment dynamics

Finite time Problem starts at time 0 and terminates at fixed time .
Indexed as k =0,1,...,N.

State space The states z, belong to the state space Sy,

Control The available controls uy belong to the action space A (zy),
which may depend on xj,

Dynamics
Tp1 = fr (@, up,wg), k=0,1,...,N—1

Disturbance/noise A random quantity wy, with distribution

wg ~ Pe(Whl|zy, ur)
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Cost and control
Agent observe zj, agent choose uy, environment generates wy,

Cost At each stage k we obtain cost

gk(Tp, ug,w), k=0,...,N—1 and gn(xy) for k= N.

Action choice Chosen as uy, = pui(x)) using a function pu, : S — Ak ()

i (z;) = {Action to take in state x, in period k}

Policy The collection m = {po, ft1,- .-, un—1}
Rollout of policy Given x, select uj = () to obtain a trajectory

o, Up, L1, ..., 2N and accumulated cost
N-1
gN (@N) + Y g (s e (21, wi)
k=0
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Expected cost/value function

Expected cost Given 7, x it is the average cost of all trajectories:

N-1

Jr(@o) = E |gn (xn) + Y gk (@x, uk (xx) , wi,)
k=0

Optimal policy Given zg, an optimal policy 7* is one that minimizes the
cost
(o) = argmin  Jr(zo)
m={H0,-stN -1}

Optimal cost function The optimal cost, given z, is denoted J*(z¢) and is
defined as
J*(z0) = min Jr(20)
m={0, N -1}

J is the key quantity in control/reinforcement learning
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Open or closed loop =

/ﬁx ' /ﬁ\ /ﬁ\
mE -

0 To
® |f environment is stochastic, we need a closed-loop controller

® |f environment is deterministic, we know the position zj, with certainty given
U, ..., ux—1. Therefore, there is no advantage in delaying choice

11 DTU Compute : Lecture2 9 February, 2024

DTU
Open versus closed loop =3
Our goal is to find the policy  which minimize:
N-1
Jr (20) = E |gn (zn) + Y i (@k, i (21) , wr)
k=0
Closed-loop minimization Select uy, last-minute as uy, = ju;(2)) when
information zy, is available
Open-loop minimization Select actions ug,...,uy_1 at k =0
® Open-loop minimization is simpler
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Quiz: Chess and DP =

Suppose the game of chess was formulated as dynamical programming (V,
Sk, Ag, etc.) with the intention of obtaining a good policy s using
dynamical programming.

This will lead to several practical problems, however, focusing just on the
potential problems listed below, which one will be a main obstacle?

a. The policy function py; will require too much memory to store
b. Given a state @y, it is not practical to define the action spaces Ay (xy)
c. It will require too much space to store the state space Ss.

d. We cannot define a meaningful cost function gj.
4] a

e. Don't know.
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Summary: Discrete stochastic decision problem
® The states are x,...,xy, and the controls are ug, ..., un_1
® wy, ~ Pp(Wy = wg|zk,u), k=0,...,N — 1 are random disturbances
® The system evolves as
Tpp1 = fr(@r, pr(r), wr), k=0,..., N-1
® At time k, the possible states/actions are z;, € Sy and uy € Ay (zy)
® Policy is a sequence of functions © = {f1g, ..., pun—1}, pk : Sk — Ag(xk)
® The cost starting in x is:
N-1
Jr (20) =E |gn (zn) + Z Gk (They pure (Tk)  wi)
k=0

® The control problem: Given x(, determine optimal policy by minimizing

7 (zg) = argmin  Jx(zo)
w={H0s- N1}

13 DTU Compute Lecture 2 9 February, 2024

=]
=
=

i

Principle of optimality (PO), deterministic case
21 = folxo,uo) a2 = fi(wr, 1)

(@ m)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

The blue line is a path corresponding to an optimal policy

J*(x0) = Jx=(20) = m}n Jr (o)

Suppose at stage i optimal path 7* = {u(’j,u’{, e ,u}‘\,_l} pass through z;
TsPQriJIobnepuEea“ policy {“T‘ (S TRRRE /LT\'*I} is optimal from B QN o February, 2020
A o o 1 0 Tl I s 1 - 1
DTU
- . . - >
Proof of PO in deterministic case s

N-1
Jre(w0) = gn(an) + Y g(an, (o)) =
k=0
i—1 N-1
(Z!/l.-(J'/,~/IL(.1‘A-))> + (!}s\'(-’lh\") + fjk(JI'A--llf-(ilfA-))>
k=0 k=i
i—1 N—-1
> <Zru(u-</z,:<u>)> +on(@h) + Y gr(@h 1 (2h)
k=0 k=i
= Jr=(uorpii_1,7))

If the optimal tail policy 7/ had a lower tail cost than the tail of optimal
policy this means:

N—1 N—1
gn(@N) + D gr(ar, wi(zx) > gy (2y) + D grl(@), i (a))
k=i k=i
and so the combined policy (1, .. ., fti—1,7.) would have lower cost than

optimal policy 7*
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Graph representation =
Starting in x(, decision problem can be seen as traversing a graph

1 = fo(zo,u0)  xp = fi(z1,m) gx-1(xN—1uN-1)
NEN)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N
® Nodes are states, edges are possible transitions, cost is sum of edges
® |n deterministic case, actions are edges and a policy is just a path
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Definitions =
For any policy m = {o, p1, .., pn-1}
®Forany k=0,...,N —1, 7% = { g, ptes1,- - -, av—1} is a tail policy
® For any x;, the cost of the tail policy is

N-1
Jiw (wk) =E {QN (an)+ Y g (i, i (a:) -,wi)}
i=k
® And the optimal cost of a tail policy starting in z;,
Jp (x1) = min Jg x, (2)
wk

® Note that Jj(zo) = J*(x0)
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The stochastic case =

Consider the stochastic case. Trajectories are now random

1 = fo(zo.wo) x5 = fi(xr,wm1)

g1, )

Stage 0 Stage 1 Stage2 .
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The stochastic case

a1 = fo(xo,u0) a2 = fi(x1,wm)

g1(r,u)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

® Consider tail policy of 7*: J; -+ (z¢)
® Suppose optimal tail policy J;(z;) is an improvement

® |t seems true the combined policy is an improvement over 7* [Her24, appendix A]
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Principle of optimality

Consider a general, stochastic/discrete finite-horizon decision problem

The principle of optimality

Let 7 = {4, 113, .-, ;iy_1 } be an optimal policy for the problem, and assume
that when using 7*, a given state z; occurs at stage i with positive probability.
Suppose 7 is the optimal tail policy obtained by minimizing the tail cost starting
from z;

N-1
Jix (2:) =E {gN (an)+ Y gi (i, i (1) ,w»} :
i=k

Then the truncated policy {u;,u;}l‘ e alﬁv—l} of 7* is optimal for the tail
problem
T p (@) = Jpme (x1) -
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The dynamical programming algorithm: Informal

a1 = fo(xo.uo)  x2 = filzr,w1)

gx-1(zx-1,un-1),

gi(xy,u1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N

® Suppose we know the optimal tail policy at stage k + 1 for all x5

® Cost of optimal path 7 from k to N is the cost of optimal pathand
® The later part is the same as J;;, | (z}11) by the PO
® We find optimal cost by minimizing

Jiilak) = min [gr(@r,wn) + Jipr (@rrn)] s p(an) =
21 DTU Compute uk €Ak @k Lecture 2 9 February, 2024
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The Dynamical Programming algorithm =

The Dynamical Programming algorithm

For every initial state x(, the optimal cost J*(z) is equal to Jy (z¢), and optimal
policy 7* is 7 = {po, ..., un—1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each z, € S). computes

Iy (zn) = gn (2n) (1)
Je(zg) = min  E {g (xk, uk, wr) + Jet1 (e @k, g, wi))} (2)

up €Ak (zr) Wk

pr(zk) =uy  (uf is the uy, which minimizes the above expression).  (3)

® There are N p's and N + 1 J's. This will also be the case in the code

® |n the deterministic case:

Ji(wp) = min - {gr (@, ur) + Jep1 (fe (@r,ur))}
ur €A (k)
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Example: Inventory control

® Consider the inventory control problem where we plan over N = 3 stages

® Customers can buy wy = 0 to wy = 2 units and we can order u, = 0 to u, =2
units

® We assume the stock can hold from 0 to 2 units (no excess stock; no backlog)
Trp1 = fr(Tp, up, wi) = 2k + up, — wy, (threshold s.t. 0 < x4y < 2)

® The cost to buy an item is 1 plus quadratic penalty for excess stock and unmet
demand:
ug + (g +up —wy)?

® There is no terminal cost gy (zn) =0

® The demand has distribution

plwp=0)=0.1, p(wg=1)=0.7, p(w,=2)=0.2
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Implementation

# inventory.py
class InventoryDPModel (DPModel):
def __init__(self, N=3):

super() .__init__(N=N)

def A(self, x, k): # Action space A_k(z)
return {0, 1, 2}

def S(self, k): # State space S_k
return {0, 1, 2}

def g(self, x, u, w, k): # Cost function g_k(z,u,w)
return u + (x + u - W) **k 2

def f(self, x, u, w, k): # Dynamics f_k(z,u,w)
return max(0, min(2, x + u - w ))

def Pw(self, x, u, k): # Distribution over random disturbances
return {0:.1, 1:.7, 2:0.2}

de:

Fh

gN(self, x):
return 0
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Option 1: Pen-and-paper

First step: J3 (23) = 0 (for all 2:3)
Step k =2 For 29 =0
- mi 2
Jo(0) = u;il(lﬁ,gﬁ {ug + (ug — wa) }
= min_[uy+ 0.1 (u2)” +0.7 (uz = 1)* + 0.2 (uz — 2%
up=0,1,2
= min {0.7-140.2:4,140.1-140.2-1,2+0.1-4+0.7-1}
uz=0,1,
= u:ll(l)flhz{lﬁ, 1.3,3.1}
Therefore p5(0) =1 and J3(0) = 1.3

Until nails bleed Keep at it for zo = 1,2 and then for £ = 1 and finally
k=0..
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4o a
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Option 2: Computer =
# inventory.py
inv = InventoryDPModel ()
J,pi = DP_stochastic(inv)
print (f"Inventory control optimal policy/value functions")
for k in range(inv.N):
print(", ".join([f" J_{k}(x_{k}={i}) = {J[k][il:.2f}" for i in inv.S(k)] ) )
for k in range(inv.N):
print(", ".join([f"pi_{k}(x_{k}={i}) = {pilk][il}" for i in inv.S(k)] ) )
Inventory control optimal policy/value functions
) = 3.70, J_0(x_0=1) 2.70, J_0(x_0=2) = 2.82
2.50, J_1(x_ 1.50, J_1(x_1=2) = 1.68
1.30, J_2(x_ 0.30, J_2(x_2=2) = 1.10
1, pi_0(x_0=1) = 0, pi_0(x. =0}
1, pi_1(x_1=1) = 0, pi_1(x, =0
1, pi_2(x_2=1) = 0, pi_2(x_2=2) =0
[+ lecture_02_optimal_dp_gl.py
(+ lecture_02_frozen_long_slippery.py
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Quiz: Manual DP =

Suppose that for a given k:

® Ap(zy) = {0,1}, Fr(@n, ur, wi) = @k + upwy

® g (Tp, up, W) = —Tpup,  Jrp1 (Tha1) = Thp

* Eflwg] =1

What is the value of Jy(z = 1)?. Tip:

Ty () = ukelgi&zk) E {gr (@, wr, wi) + Jisr (fi (@, we, wi)) }

a. Jy(1) = -2

b. Ji(1) = -1

c. Jp(1)=0

d. Jp(l) =1

e. Jp(1) =2

f. Don't know.
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Part 1 of the project =

® you should be all set!

/ / Project 1: Dynamical Programming

© Note

When? Thursday 29th February, 2024. Before 23:59

Sequential Decision-Making
What? To get started, download the project description here:
Where? Under assignments on DTU Learn
What to hand in? (see project description)

“ o o ‘ o irlc/project1/Project1_handin_k_of_n.token
Exercises v Consult the project description (above) for details about the problems. To get the newest version of the course
| Projects v material, please see M: ’
Creating your hand-in
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Experiment on Al in teaching

® How can Al improve studying?

® Log in: Ask Marius/Me.

® Feedback very appreciated on
Discord

® File issues on https:
//github.com/tuhe/chattutor

® Completely voluntary.

® Discord/TAs are still the main
feedback channels
® Waiting for a Piazza license

® Data and privacy . e
® We will note store identifying
information after a year = T
® Anonymized data may be used
for research purposes .
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Recruiting usability testers

® Friday Feb. 16th from 12.00 - 15.30
® 30 minutes sessions
® 7 students

® 5 who have not tried ChatTutor
® 2 who have already tried it
® Free lunch!

® marius@ddsa.dk
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[3 Tue Herlau.
Sequential decision making.
(Freely available online), 2024.
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