

02465: Introduction to reinforcement learning and control

Discretization and PID control

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

- 1 The finite-horizon decision problem 2 February
- 2 Dynamical Programming 9 February
- 3 DP reformulations and introduction to Control

16 February Control

- Discretization and PID control 23 February
- 6 Direct methods and control by optimization

1 March

- 6 Linear-quadratic problems in control 8 March
- Linearization and iterative LQR

15 March

Reinforcement learning

- 8 Exploration and Bandits 22 March
- Opening Policy and value iteration 5 April
- Monte-carlo methods and TD learning 12 April
- Model-Free Control with tabular and linear methods 19 April
- Eligibility traces and value-function approximations 26 April
- Q-learning and deep-Q learning 3 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public

Help improve lecture by giving feedback on DTU learn

Reading material:

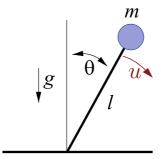
• [Her24, Chapter 12-14]

Learning Objectives

- Discretization of a control problem
- Control environments
- Exact solution for linear problems
- PID control

3 DTU Compute Lecture 4 23 February, 2024

Example: The pendulum environment



If u is a torque applied to the axis of rotation θ then:

$$\ddot{\theta}(t) = \frac{g}{l}\sin(\theta(t)) + \frac{u(t)}{ml^2}$$

If $oldsymbol{x} = egin{bmatrix} heta & \dot{ heta} \end{bmatrix}^T$ this can be written as

$$\dot{\boldsymbol{x}} = \begin{vmatrix} \dot{\theta} \\ \frac{g}{l}\sin(\theta) + \frac{u}{ml^2} \end{vmatrix} = f(\boldsymbol{x}, u) \tag{1}$$

lecture_04_pendulum_random.py

Dynamics

We assume the system we wish to control has dynamics of the form

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$$

- ullet $oldsymbol{x}(t) \in \mathbb{R}^n$ is a complete description of the system at t
- ullet $oldsymbol{u}(t) \in \mathbb{R}^d$ are the controls applied to the system at t
- The time t belongs to an interval $[t_0, t_F]$ of interest

DIO

Cost and policy

• The cost function will be of this form:

$$J_{\boldsymbol{u}}(\boldsymbol{x},t_{0},t_{F}) = \underbrace{c_{F}\left(t_{0},t_{F},\boldsymbol{x}\left(t_{0}\right),\boldsymbol{x}\left(t_{F}\right)\right)}_{\text{Mayer Term}} + \underbrace{\int_{t_{0}}^{t_{F}}c(\tau,\boldsymbol{x}(\tau),\boldsymbol{u}(\tau))d\tau}_{\text{Lagrange Term}}$$

5 DTU Compute Lecture 4 23 February, 2024

The continuous-time control problem

Given system dynamics for a system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

Obtain $oldsymbol{u}:[t_0;t_F]
ightarrow \mathbb{R}^m$ as solution to

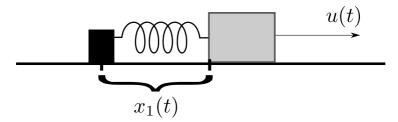
$$u^*, x^*, t_0^*, t_F^* = \underset{x, u, t_0, t_F}{\arg \min} J_u(x, u, t_0, t_F).$$

(Minimization subject to all constraints)

Today:

- Linear-quadratic problems
- Discretization $t \to t_0, t_1, \dots, t_N$
- Why?
 - To build a gymnasium environment
 - To apply Dynamical Programming

Linear-quadratic problems: The harmonic oscillator

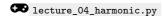


A mass attached to a spring which can move back-and-forth

$$\ddot{x}(t) = -\frac{k}{m}x(t) + \frac{1}{m}u(t) \tag{2}$$

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \boldsymbol{u} \tag{3}$$

$$J = \int_0^{t_F} \left(\boldsymbol{x}(t)^\top \boldsymbol{x}(t) + u(t)^2 \right) dt.$$
 (4)



General linear-quadratic control

For $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times d}$

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t) + \boldsymbol{d}$$
(5)

We assume $t_0 = 0$ and that the cost-function is quadratic:

$$J_{\boldsymbol{u}}(\boldsymbol{x}_0, t_F) = \frac{1}{2} \int_0^{t_f} \boldsymbol{x}^T(t) Q \boldsymbol{x}(t) + \boldsymbol{u}^T(t) R \boldsymbol{u}(t) dt$$
 (6)

DTU Compute

Discretization t_k t_k t_{k+1}

• Euler-integration will be used to discretize the model:

$$egin{aligned} m{x}_{k+1} &= m{f}_k(m{x}_k, m{u}_k) \ &= m{x}_k + \Delta m{f}(m{x}_k, m{u}_k, t_k) \ J_{m{u} = (m{u}_0, m{u}_1, \dots, m{u}_{N-1})}(m{x}_0) &= c_f(t_0, m{x}_0, t_F, m{x}_F) + \sum_{k=0}^{N-1} c_k(m{x}_k, m{u}_k) \ c_k(m{x}_k, m{u}_k) &= \Delta c(m{x}_k, m{u}_k). \end{aligned}$$

The discrete model is deterministic but approximate:
 Open-loop no longer optimal

Variable transformation

• It is common to consider variable transformations. For the pendulum:

$$\phi_x : \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \mapsto \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \\ \dot{\theta} \end{bmatrix} . \tag{7}$$

(avoids periodiodic)

• For control signal -U < u < U:

$$\phi_u : \left[u \right] \mapsto \left[\tanh^{-1} \frac{u}{U} \right].$$
 (8)

(No longer constrained)

• The update equations in the discrete coordinates x_k , u_k are:

$$\boldsymbol{x}_{k+1} = \phi_x \left(\phi_x^{-1}(\boldsymbol{x}_k) + \Delta \boldsymbol{f}(\phi_x^{-1}(\boldsymbol{x}_k), \phi_u^{-1}(\boldsymbol{u}_k), t_k) \right)$$
(9)

$$= \boldsymbol{f}_k(\boldsymbol{x}_k, \boldsymbol{u}_k) \tag{10}$$

Quiz: Discretization

Consider the pendulum: If $oldsymbol{x} = egin{bmatrix} heta & \dot{ heta} \end{bmatrix}^T$ this can be written as

$$\dot{\boldsymbol{x}} = \begin{bmatrix} \dot{\theta} \\ \frac{g}{l} \sin(\theta) + \frac{u}{ml^2} \end{bmatrix} = f(\boldsymbol{x}, u)$$

What is the Euler discretization update using the convention $m{x}_k = egin{bmatrix} heta_k \\ \dot{ heta}_k \end{bmatrix}$?

a.
$$\begin{bmatrix} \theta_{k+1} \\ \dot{\theta}_{k+1} \end{bmatrix} = \Delta \begin{bmatrix} \theta_k + \dot{\theta}_k \\ \frac{g}{l} \sin \theta_k + \frac{u_k}{ml^2} \end{bmatrix}$$

b.
$$\begin{bmatrix} \theta_{k+1} \\ \dot{\theta}_{k+1} \end{bmatrix} = \begin{bmatrix} \theta_k + \Delta \dot{\theta}_k \\ \dot{\theta}_k + \Delta \left(\frac{g}{l} \sin \theta_k + \frac{u_k}{ml^2} \right) \end{bmatrix}$$

c.
$$\begin{bmatrix} \theta_{k+1} \\ \dot{\theta}_{k+1} \end{bmatrix} = \Delta \begin{bmatrix} \theta_k \\ \frac{g}{l} \sin \theta_{k+1} + \frac{u_k}{ml^2} \end{bmatrix}$$

$$\mathbf{d.} \begin{bmatrix} \theta_{k+1} \\ \dot{\theta}_{k+1} \end{bmatrix} = \begin{bmatrix} \Delta \theta_{k+1} + \dot{\theta}_k \\ \Delta \dot{\theta}_{k+1} + \frac{g}{l} \sin \theta_k + \frac{u_k}{ml^2} \end{bmatrix}$$

Exponential Integration of linear models

Recall that general linear dynamics has the form

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t) + \boldsymbol{d} \tag{11}$$

Euler integration would suggest:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta f(\mathbf{x}_k, \mathbf{u}_k)$$
$$= (I + \Delta A)\mathbf{x}_k + \Delta B\mathbf{u}_k + \Delta \mathbf{d}$$

In fact, the following is an exact solution (see [Her24, section 12.1])

$$\mathbf{x}_{k+1} = e^{A\Delta} \mathbf{x}_k + A^{-1} (e^{A\Delta} - I) B \mathbf{u}_k + A^{-1} (e^{A\Delta} - I) \mathbf{d}$$
 (12)

(The symbol $e^A pprox I + A + \frac{1}{2}A^2 + \cdots$ is the matrix exponential)

Implementation

- You still only implement a ControlModel class (as last week)
- Creating a discrete model and an environment is automatic
- See the online documentation for week 4.

14 DTU Compute Lecture 4 23 February, 2024

Approaches to control

- ullet Rule-based methods (build $oldsymbol{u}(t)=\pi(oldsymbol{x},t)$ directly)
- Optimization-based methods:

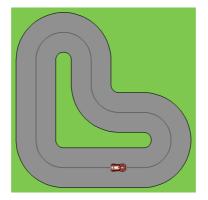
$$u^* = \operatorname*{arg\,min}_{oldsymbol{u}} J_{oldsymbol{u}}(oldsymbol{x}_0)$$

DP-inspired planning methods

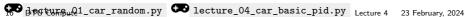
PID Control

Consider a water-heater where we apply heat u to keep temperature x at a desired level x^*

- If $x < x^*$ apply more u
- If $x > x^*$ apply less u



- \bullet If left-of-centerline turn wheel u right
- \bullet If right-of-centerline turn wheel u left



Example: The locomotive

Steer locomotive (starting at x = -1) to goal $(x^* = 0)$

$$\ddot{x}(t) = \frac{1}{m}u(t) \tag{13}$$

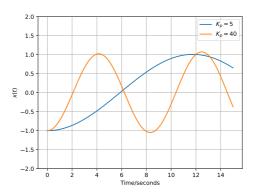
Or alternatively:

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \boldsymbol{u} \tag{14}$$

P is for proportionality

Idea: If $x < x^*$, increase u proportional to $x^* - x$:

$$e_k = x^* - x_k$$
$$u_k = e_k K_p$$



lecture_04_pid_p.py

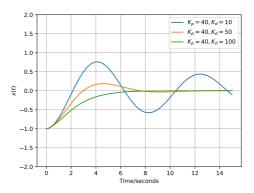
DIU

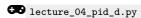
D is for derivative

Idea: Slow down approach when e changes

$$e_k = x^* - x_k$$

$$u_k = e_k K_p + K_d \frac{e_k - e_{k-1}}{\Delta}$$



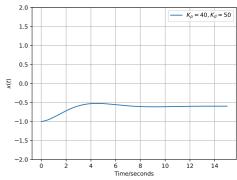


Droop

Using same controller as before on an inclined plane

$$e_k = x^* - x_k$$

$$u_k = e_k K_p + K_d \frac{e_k - e_{k-1}}{\Delta}$$



lecture_04_pid_iA.py

I in PID fixes droop

We fix droop by accumulating the total drop and adding it to u:

$$e_{k} = x^{*} - x_{k}$$

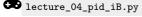
$$I_{k} = I_{k-1} + \Delta e_{k}$$

$$u_{k} = e_{k}K_{p} + K_{d}\frac{e_{k} - e_{k-1}}{\Delta} + I_{k}$$

$$\frac{e_{k} - e_{k-1}}{\Delta} + I_{k}$$

$$\frac{e_{k} - e_{k-1}}{\Delta} + I_{k}$$

$$\frac{e_{k} - e_{k-1}}{\Delta} + I_{k}$$



 \bigcirc lecture_04_pid_iB.py (Should we limit the maximum value of I_k ?)

PID controller

Algorithm 1 PID controller

- 1: $K_p > 0$ and $K_i, K_d \ge 0$
- 2: Δ time between observations x_k (discretization)
- 3: x^* Control target

4:
$$e^{\mathsf{prev}} \leftarrow 0$$
 > Previous value of error

5: **function** POLICY
$$(x_k)$$
 \triangleright PID Controller called with observation x_k

6:
$$e \leftarrow x^* - x_k$$
 \triangleright Compute error
7: $I \leftarrow I + \Delta e$ \triangleright Update integral term

7:
$$I \leftarrow I + \Delta e$$
 \Rightarrow Update integral term 8: $u \leftarrow K_p e + K_i I + K_d \frac{e - e^{\mathsf{prev}}}{\Delta}$ \Rightarrow PID control signal

$$u \leftarrow K_p e + K_i I + K_d \frac{}{\Delta} \qquad \qquad \triangleright \text{PID Control Signa}$$

9:
$$e^{\mathsf{prev}} \leftarrow e$$
 \triangleright Save current error for next iteration

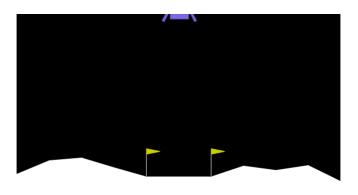
- 10: return u
- 11: end function

Quiz: PID control

Suppose the pendulum is discretized using a time discretization constant of $\Delta=\frac{1}{2}$ seconds. If the angle is $w_k=2$ and a PID controller is applied with $K_p=2$ and $K_d=K_i=0$ (and a target of 0 degrees), what is the control output?

- **a.** $u_k = -4$
- **b.** $u_k = 8$
- **c.** $u_k = 4$
- **d.** $u_k = -8$
- e. Don't know.

Example:



lecture_04_cartpole_A.py , lecture_04_lunar.py

24 DTU Compute Lecture 4 23 February, 2024

Tue Herlau.

Sequential decision making.

(Freely available online), 2024.

DTU Compute Lecture 4 23 February, 2024