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Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
2 February

2 Dynamical Programming
9 February

3 DP reformulations and introduction to
Control
16 February

Control

4 Discretization and PID control
23 February

5 Direct methods and control by
optimization
1 March

6 Linear-quadratic problems in control
8 March

7 Linearization and iterative LQR
15 March

Reinforcement learning

8 Exploration and Bandits
22 March

9 Policy and value iteration
5 April

10 Monte-carlo methods and TD learning
12 April

11 Model-Free Control with tabular and
linear methods
19 April

12 Eligibility traces and value-function
approximations
26 April

13 Q-learning and deep-Q learning
3 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
• [Her24, Chapter 15]

Learning Objectives
• Direct methods for optimal control
• Trajectory planning for linear-quadratic problems using optimization
• Trajectory planning using trapezoidal collocation
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Project part 1

• Great job! Part 2 is online
• Survey on course experience on DTU Learn
• Thanks to the student who caught a problem with problem 1 for this weeks

exercises; please point out all potential mistakes!
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Recap from last week
Dynamics

Dynamics of the form
ẋ(t) = f(x(t), u(t), t)

• x(t) ∈ Rn is a complete description of the system at t

• u(t) ∈ Rd are the controls applied to the system at t

• The time t belongs to an interval [t0, tF ] of interest
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Recap from last week
Example: Cartpole

• Coordinates are x =
[
x ẋ θ θ̇

]
(angle, angular velocity, cart position, cart

velocity)
• Action u is one-dimensional; the force applied to cart
• Dynamics are

ẋ(t) = f(x(t), u(t), t)

where f is a fairly complicated function
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Recap from last week
Constraints

Equality constraint: x = c (1)
Inequality constraint: a ≤ x ≤ b (2)

Any realistic physical system has constraints
• Simple boundary constraints

xlow ≤ x(t) ≤ xupp

ulow ≤ u(t) ≤ uupp

• End-point constraints:

x0, low ≤ x (t0) ≤ x0, upp

xF, low ≤ x (tF ) ≤ xF,upp.
(3)

• Time constraints
t0, low ≤ t0 ≤ t0, upp

tF, low ≤ tF ≤ tF,upp.
(4)
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Recap from last week
Cost and policy

• The cost function is of the form

Ju(x, t0, tF ) = cF (t0, tF , x (t0) , x (tF ))︸ ︷︷ ︸
Mayer Term

+
∫ tF

t0

c(τ, x(τ), u(τ))dτ

︸ ︷︷ ︸
Lagrange Term
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Recap from last week
Cartpole

• Necessary constraint −umax < u(t) < umax and x0 =
[
0 0 π 0

]

• Goal is to bring x to xg =
[
1 0 0 0

]

• Up-right cartpole, version 1:
•

Ju(t0, tF , x) = ∥x(tF )− xg∥2 + λ

∫ tF

t0

u(t)⊤u(t)

• Constraints t0 = 0, tF = 3 (complete in 3 seconds)
• Up-right cartpole, version 2:

•
Ju(t0, tF , x) = tF − t0

• Constraints xF = xg

Endless combinations; depends on goal + method you are using
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Recap from last week
The continuous-time control problem

Given system dynamics for a system

ẋ(t) = f(t, x(t), u(t))

Obtain u : [t0; tF ]→ Rm as solution to

u∗, x∗, t∗
0, t∗

F = arg min
x,u,t0,tF

Ju(x, u, t0, tF ).

(Minimization subject to all constraints)
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Recap from last week
Discretization

• Simplest choice: Eulers method
• Choose grid size N : t0, t1, . . . , tN = tF , tk+1 − tk = ∆
• xk = x(tk), uk = u(tk)

xk+1 = fk(xk, uk)
= xk + ∆f(xk, uk, tk)

Ju=(u0,u1,...,uN−1)(x0) = cf (t0, x0, tF , xF ) +
N−1∑

k=0
ck(xk, uk)

ck(xk, uk) = ∆c(xk, uk, tk)

• Simple but not very exact11 DTU Compute Lecture 5 1 March, 2024

Recap from last week
Approaches to control

• Last week: Rule-based methods (build u(t) = π(x, t) directly)
• Today: Optimization-based methods:

u∗ = arg min
u

Ju(x0)

• Direct optimization of a discretized version of the problem
• Next week: DP-inspired planning methods
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Recap from last week
Infrastructure: Nonlinear program

A non-linear program is an optimization task of the form

min
z∈Rn

E(z) subject to

h(z) = 0
g(z) ≤ 0
zlow ≤ z ≤ zupp

i.e. the objective is to find the z that minimizes E under the constraints.
• If problem is not too complex, can use methods such as sequential convex

programming to find z∗.
• Requires luck and engineering

• Needs a good initial guess
• Improves when given gradient of J and Jacobian of f and h.

13 DTU Compute Lecture 5 1 March, 2024

Recap from last week
Infrastructure: Linear Quadratic program

A special case of the optimization task:

min 1
2xT Qx + cT x subject to

Ax ≤ b

Fx = g

• When Q is positive definite and the problem is not very large the solution can
always be found
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Recap from last week
Optimizing the Discrete Problem: Shooting
Consider the simplest form of a discrete control problem

xk+1 = Akxk + Bkuk + dk

quadratic cost function

Ju0,...,uN−1(x0) = xT
N QN xN +

N−1∑

k=0
(xT

k Qkxk + uT
k Rkuk)

• Given u0, . . . , uN−1, all the xk’s can be found form the system dynamics:

x2 = A1x1 + B1u1 + d1 = A1(A0x0 + B0u0 + d0) + B1u1 + d1

• Problem equivalent to optimizing Ju0,...,uN−1(x0) (which is quadratic) wrt.
u0, . . . , uN−1

• This method is called shooting
• + A single linear-quadratic optimization problem
• + Easy to understand
15 DTU Compute Lecture 5 1 March, 2024

Recap from last week
Optimizing the Discrete Problem: Shooting

• General case

xk+1 = fk(xk, uk)

Ju=(u0,u1,...,uN−1)(x0) = cf (t0, x0, tF , xF ) +
N−1∑

k=0
ck(xk, uk)

• Get rid of all the xk’s except x0:

x2 = f(x1, u1) = f(f(x0, u0), u1)

So just optimize Ju=(u0,u1,...,uN−1)(x0) wrt. u

• + Easy to understand
• A big, non-linear program (we cannot avoid that for general dynamics)
• - Unstable: small changes in u0 can mean big changes in xN

• - Eulers method is imprecise
• - No bueno. To overcome these issues, we have to take a step back
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Recap from last week
The continuous-time control problem

Given system dynamics for a system

ẋ(t) = f(t, x(t), u(t)) (5)

Subject to a number of dynamical and constant path and end-point
constraints, obtain u : [t0; tF ]→ Rm as solution to

min
t0,tF ,x(t),u(t)

cF (t0, tF , x (t0) , x (tF ))︸ ︷︷ ︸
Mayer Term

+
∫ tF

t0
c(x(τ), u(τ), τ)dτ

︸ ︷︷ ︸
Lagrange Term

subject to eq. (5) and whatever constraints are imposed on the system.
This is a nasty constrained minimization problem
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nasty1
Recap from last week
Numerical integration

Suppose we wish to approximate a function f(x). Divide interval into a
partition a = x0 < x1 < · · · < xn = b

Choices corresponds to
• Piecewise constant
• Piecewise linear
• Piecewise 2nd order polynomial (use midpoint to fit the three parameters)
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Recap from last week
Approximation and integration

Each provide an approximation for the integral:
∫ b

a f(x)dx

• Midpoint rule: ≈∑n−1
i=0 f

(
xi+1+xi

2

)
∆i

• Trapezoid rule: ≈ ∆x
2 (f (x0) + 2f (x1) + 2f (x2) + · · ·+ 2f (xn−1) + f (xn))

• Simpson’s rule: ≈
∆x
3 (f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · ·+ 4f (xn−1) + f (xn))
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Recap from last week
General Collocation: Time discretization

• Given t0 and tF and N

• We discretize the time into N intervals:

t0 < t1 < t2 < · · · < tN−1 = tF

• Specifically tk = t0 + k
N−1 (tF − t0)

• For later use we define:

hk = tk+1 − tk, k = 0, . . . , N − 2
xk = x (tk) , k = 0, . . . , N − 1
uk = u (tk)
ck = c (xk, uk, tk)
fk = f (xk, uk, tk)
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Recap from last week
Trapezoid collocation

Trapezoid collocation assumes
∫ tF

t0
c(x(τ), u(τ), τ)dτ ≈

N−2∑

k=0

1
2hk (ck + ck+1)

We can at this point evaluate the cost if we know x and u!

cF (t0, tF , x0, xN ) + 1
2

N−2∑

k=0
hk (ck + ck+1)
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trapz
Recap from last week
Collocating system dynamics

Recall
ẋ = f(x, u, t)

Integrating both sides
∫ tk+1

tk

ẋ(t)dt =
∫ tk+1

tk

f(x(t), u(t), t)dt

Using trapezoid collocation we on the right-hand side and integrating the
left

xk+1 − xk ≈
1
2hk

(
fk+1 + fk

)
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Recap from last week
Trapezoid collocation: System dynamics

• Constraints are translated to simply apply to their knot points:

x < 0 → xk < 0
u < 0 → uk < 0
h(t, x, u) < 0 → h (tk, xk, uk) < 0

• Boundary constraints still just apply at boundary:

g (t0, x (t0) , u (t0)) < 0 → g (t0, x0, u0) < 0
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Recap from last week
Trapezoid collocation: First attempt

Optimize over z = (x0, u0, . . . , uN−1, t0, tf )

min
z

[
cF (t0, tF , x0, xN ) + 1

2

N−2∑

k=0
hk (ck + ck+1)

]

Such that
h (tk, xk, uk) < 0
g (t0, tF , x0, xF ) ≤ 0

with convention we iteratively compute xk+1 from xk starting at k = 0

k = 0, . . . , N − 2 : xk+1 = xk + 1
2hk

(
fk+1 + fk

)

Wait, did we just solve it?
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Recap from last week
Almost! The final idea:

• Suppose we let xk, uk vary freely (ensure everything can be evaluated)
• But we add the N − 1 constraints:

xk+1 = xk + 1
2hk

(
fk+1 + fk

)

• The key observation is local changes in xk and uk have local effects
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Recap from last week
Trapezoid collocation method

Optimize over z = (x0, u0, x1, u1, . . . , xN−1, uN−1, t0, tF )

min
z

[
cF (t0, tF , x0, xN ) + 1

2

N−2∑

k=0
hk (ck + ck+1)

]
(6)

Such that zlb ≤ z ≤ zub (7)
h (tk, xk, uk) ≤ 0 (8)

xk − xk+1 + 1
2hk

(
fk+1 + fk

)
= 0 (9)

• Optimizer also need initial point z0

• Recall fk = f(xk, uk, tk) so last constraint is non-linear
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Recap from last week
Reconstruction
Given z, how do we reconstruct the (predicted) path x(t) and u(t)?

• u(t) was assumed to be linear, using τ = t− tk:

u(t) ≈ uk + τ

hk
(uk+1 − uk)

• For x(t) we assumed

ẋ(t) ≈ fk + τ

hk

(
fk+1 − fk

)

• Integrating both sides and using x(tk) = xk

x(t) = xk + fkτ + τ2

2hk

(
fk+1 − fk

)
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Recap from last week
Implementation

Algorithm 1 Direct solver
1: function Direct-Solve(N , guess=(tg

0, tg
F , xg, ug) )

2: Define z ← (x0, u0, . . . , xN−1, uN−1, t0, tF ) as all optimization variables
3: Define grid time points tk = k

N−1(tF − t0) + t0, k = 0, . . . , N − 1 ▷ eq. (15.11)
4: Define hk, fk = f(xk, uk, tk) and ck = c(xk, uk, tk).
5: Define Ieq and Iineq as empty lists of inequality/equality constraints
6: for k = 0, . . . , N − 2 do
7: Append constraint xk+1 − xk = hk

2 (fk+1 + fk) to Ieq ▷ eq. (15.20)
8: Add all other path-constraints eq. (15.21) to Iineq and Ieq
9: end for

10: Add possible end-point constraints on x0, xF and t0, tF to Ieq and Iineq
11: Build optimization target E(z) = cf (t0, tF , x0, xN−1) + ∑N−2

k=0
hk
2 (ck+1 + ck)

12: Construct guess time-grid: tg
k ← k

N−1(tg
F − tg

0) + tg
0

13: Construct guess states zg ← (xg(tg
0), ug(tg

0), · · · , xg(tg
N−1), ug(tg

N−1), tg
0, tg

F )
14: Let z∗ be minimum of E optimized over z subject to Ii and Ieq using guess zg

15: Re-construct u∗(t), x∗(t) from z∗ using eq. (15.22) and eq. (15.26)
16: Return u∗, x∗ and t∗

0, t∗
F

17: end function
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Recap from last week
Making it work well

• For small N , method is imprecise, but less sensitive to z0

• For moderate N , method is very sensitive to z0

• Initially we do linear interpolation to get z0

• An idea is to use an optimizer for low value of N , obtain solution z′

• From this z′, we can construct x′(t) and u′(t)
• We run optimizer with higher N and an initial guess as xk = x′(tk)
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Recap from last week
Implementation

Algorithm 2 Iterative direct solver
Require: An initial guess zg

0 = (xg, ug, tg
0, tg

F ) found using simple linear
interpolation

Require: A sequence of grid sizes 10 ≈ N0 < N1 < · · · < NT

1: for t = 0, T do
2: x∗, u∗, t∗

0, t∗
F ← Direct-Solve(Nt, zg

t )
3: zt+1 ← x∗, u∗, t∗

0, t∗
F

4: end for
5: Return u∗, x∗ and t∗

0, t∗
F
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Recap from last week
Implementation:

1 # sample.py
2 ineq_cons = {'type': 'ineq',
3 'fun': lambda x: np.array([1 - x[0] - 2 * x[1],
4 1 - x[0] ** 2 - x[1],
5 1 - x[0] ** 2 + x[1]]),
6 'jac': lambda x: np.array([[-1.0, -2.0],
7 [-2 * x[0], -1.0],
8 [-2 * x[0], 1.0]])}
9 eq_cons = {'type': 'eq',

10 'fun': lambda x: np.array([2 * x[0] + x[1] - 1]),
11 'jac': lambda x: np.array([2.0, 1.0])}
12 from scipy.optimize import Bounds
13 z_lb, z_ub = [0, -0.5], [1.0, 2.0]
14 bounds = Bounds(z_lb, z_ub) # Bounds(z_low, z_up)
15 z0 = np.array([0.5, 0])
16 res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,
17 constraints=[eq_cons, ineq_cons], bounds=bounds)

We use sympy because of the gradient/Jacobians
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Recap from last week
Example: Pendulum
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Recap from last week
Example: Cartpole, the Kelly task

Task is taken from the excellent [Kel17]
• Constraints: t0 = 0, tF = 2, end-point constraints x0 and xF = xg and
−20 < u(t) < 20
• c(x, u, t) = u(t)2

• Grid refinement: N = 10 then N = 60

s lecture_05_cartpole_kelly
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Recap from last week
Example: Cartpole, the minimum-time task

From the (also great!) https://github.com/MatthewPeterKelly/
OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
• Constraints: t0 = 0, tF > 0, end-point constraints x0 and xF = xg and
−50 < u(t) < 50
• c(x, u, t) = tF − t0

• N = 8, 16, 32, 70

s lecture_05_cartpole_time
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Recap from last week
Optimizing the Discrete Problem - Collocation

• We can also optimize over both action/state values

The optimisation problem is then defined as

minimize xT
N QN xN +

N−1∑

k=0
(xT

k Qkxk + uT
k Rkuk)

subject to F ′x ≤ h′

F ′′x ≤ h′′

Akxk + Bkuk + dk − xk+1 = 0
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Recap from last week
Example: Brachistochrone
What is the fastest path for a bead to travel xB distance in the x-direction?

0.0 0.2 0.4 0.6 0.8 1.0
x-position

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y-
po

sit
io

n

Curve in x/y plane

• Cost: min tF

• Actions is the angle u(t). Dynamics:
ẋ = v sin u, ẏ = v cos u, v̇ = g cos u (10)

• End-point constraints
x(0) = y(0) = v(0) = 0, x (tF ) = xB
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Recap from last week
Example: Brachistochrone with dynamical constraints

Same as before but bead cannot pass through solid object

0.0 0.2 0.4 0.6 0.8 1.0
x-position

0.0

0.1

0.2

0.3

0.4

0.5

0.6
y-

po
sit

io
n

Curve in x/y plane

• Dynamical constraint

h(x) = y − x

2 − h ≤ 0 (11)
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Recap from last week
Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule
∫ tF

t0
c(τ)dτ ≈

N−1∑

k=0

hk

6
(
ck + 4ck+ 1

2
+ ck+1

)

For dynamics

xk+1 − xk = 1
6hk

(
fk + 4fk+ 1

2
+ fk+1

)

• Generally better for small N

• Scales worse in N
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Tue Herlau.
Sequential decision making.
(Freely available online), 2024.

Matthew Kelly.
An introduction to trajectory optimization: How to do your own direct
collocation.
SIAM Review, 59(4):849–904, 2017.
(See kelly2017.pdf).
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