

02465: Introduction to reinforcement learning and control

Direct methods and control by optimization

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)



DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

- 1 The finite-horizon decision problem 2 February
- 2 Dynamical Programming 9 February
- 3 DP reformulations and introduction to Control

16 February

Control

- Discretization and PID control 23 February
- 6 Direct methods and control by optimization

1 March

- 6 Linear-quadratic problems in control 8 March
- Linearization and iterative LQR

15 March

Reinforcement learning

- 8 Exploration and Bandits 22 March
- Opening Policy and value iteration 5 April
- Monte-carlo methods and TD learning 12 April
- Model-Free Control with tabular and linear methods 19 April
- Eligibility traces and value-function approximations 26 April
- Q-learning and deep-Q learning 3 May

DTU Compute Lecture 5 1 March, 2024

Syllabus: https://02465material.pages.compute.dtu.dk/02465public

Help improve lecture by giving feedback on DTU learn

Reading material:

• [Her24, Chapter 15]

Learning Objectives

- Direct methods for optimal control
- Trajectory planning for linear-quadratic problems using optimization
- Trajectory planning using trapezoidal collocation

Project part 1

- Great job! Part 2 is online
- Survey on course experience on DTU Learn
- Thanks to the student who caught a problem with problem 1 for this weeks exercises; please point out all potential mistakes!

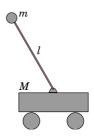
Dynamics

Dynamics of the form

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$$

- ullet $oldsymbol{x}(t) \in \mathbb{R}^n$ is a complete description of the system at t
- ullet $oldsymbol{u}(t) \in \mathbb{R}^d$ are the controls applied to the system at t
- ullet The time t belongs to an interval $[t_0,t_F]$ of interest

Example: Cartpole



- Coordinates are ${m x}=\begin{bmatrix} x & \dot x & \theta & \dot \theta \end{bmatrix}$ (angle, angular velocity, cart position, cart velocity)
- ullet Action u is one-dimensional; the force applied to cart
- Dynamics are

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$$

where f is a fairly complicated function

Constraints

Equality constraint:
$$x = c$$
 (1)

Inequality constraint:
$$a \le x \le b$$
 (2)

Any realistic physical system has constraints

Simple boundary constraints

$$egin{aligned} & oldsymbol{x}_{ ext{low}} \leq oldsymbol{x}(t) \leq oldsymbol{x}_{ ext{upp}} \ & oldsymbol{u}_{ ext{low}} \leq oldsymbol{u}(t) \leq oldsymbol{u}_{ ext{upp}} \end{aligned}$$

• End-point constraints:

$$egin{aligned} oldsymbol{x}_{0,\;\mathsf{low}} & \leq oldsymbol{x}\left(t_{0}
ight) \leq oldsymbol{x}_{0,\;\mathsf{upp}} \ oldsymbol{x}_{F,\;\mathsf{low}} & \leq oldsymbol{x}\left(t_{F}
ight) \leq oldsymbol{x}_{F,\;\mathsf{upp}}. \end{aligned} \tag{3}$$

• Time constraints

$$t_{0, \text{ low}} \le t_0 \le t_{0, \text{ upp}}$$

$$t_{F, \text{ low}} < t_F < t_{F, \text{ upp}}.$$
(4)

• The cost function is of the form

$$J_{\boldsymbol{u}}(\boldsymbol{x},t_{0},t_{F}) = \underbrace{c_{F}\left(t_{0},t_{F},\boldsymbol{x}\left(t_{0}\right),\boldsymbol{x}\left(t_{F}\right)\right)}_{\text{Mayer Term}} + \underbrace{\int_{t_{0}}^{t_{F}}c(\tau,\boldsymbol{x}(\tau),\boldsymbol{u}(\tau))d\tau}_{\text{Lagrange Term}}$$

Cartpole

- ullet Necessary constraint $-u_{
 m max} < u(t) < u_{
 m max}$ and $oldsymbol{x}_0 = egin{bmatrix} 0 & 0 & \pi & 0 \end{bmatrix}$
- ullet Goal is to bring $oldsymbol{x}$ to $oldsymbol{x}^g = egin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
- Up-right cartpole, version 1:

$$J_u(t_0, t_F, \boldsymbol{x}) = \|\boldsymbol{x}(t_F) - \boldsymbol{x}^g\|^2 + \lambda \int_{t_0}^{t_F} \boldsymbol{u}(t)^\top \boldsymbol{u}(t)$$

- Constraints $t_0 = 0, t_F = 3$ (complete in 3 seconds)
- Up-right cartpole, version 2:

•

$$J_u(t_0, t_F, \boldsymbol{x}) = t_F - t_0$$

ullet Constraints $oldsymbol{x}_F = oldsymbol{x}^g$

Endless combinations; depends on goal + method you are using

The continuous-time control problem

Given system dynamics for a system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

Obtain $oldsymbol{u}:[t_0;t_F]
ightarrow \mathbb{R}^m$ as solution to

$$u^*, x^*, t_0^*, t_F^* = \underset{x, u, t_0, t_F}{\arg \min} J_u(x, u, t_0, t_F).$$

(Minimization subject to all constraints)

Discretization \mathbf{u}_k

- Simplest choice: Eulers method
- ullet Choose grid size $N\colon t_0,t_1,\ldots,t_N=t_F$, $t_{k+1}-t_k=\Delta$
- $\bullet \ \boldsymbol{x}_k = \boldsymbol{x}(t_k), \boldsymbol{u}_k = \boldsymbol{u}(t_k)$

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{f}_k(\boldsymbol{x}_k, \boldsymbol{u}_k) \\ &= \boldsymbol{x}_k + \Delta \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k) \\ J_{\boldsymbol{u} = (\boldsymbol{u}_0, \boldsymbol{u}_1, \dots, \boldsymbol{u}_{N-1})}(\boldsymbol{x}_0) &= c_f(t_0, \boldsymbol{x}_0, t_F, \boldsymbol{x}_F) + \sum_{k=0}^{N-1} c_k(\boldsymbol{x}_k, \boldsymbol{u}_k) \\ c_k(\boldsymbol{x}_k, \boldsymbol{u}_k) &= \Delta c(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k) \end{aligned}$$

- ullet Last week: Rule-based methods (build $oldsymbol{u}(t) = \pi(oldsymbol{x},t)$ directly)
- Today: Optimization-based methods:

$$\boldsymbol{u}^* = \arg\min_{\boldsymbol{u}} J_{\boldsymbol{u}}(\boldsymbol{x}_0)$$

- Direct optimization of a discretized version of the problem
- Next week: DP-inspired planning methods

Infrastructure: Nonlinear program

A non-linear program is an optimization task of the form

$$\min_{m{z} \in \mathbb{R}^n} E(m{z})$$
 subject to $m{h}(m{z}) = 0$ $m{g}(m{z}) \leq 0$ $m{z}_{\mathsf{low}} \ \leq m{z} \leq m{z}_{\mathsf{upp}}$

i.e. the objective is to find the z that minimizes E under the constraints.

- If problem is not too complex, can use methods such as **sequential convex programming** to find **z***.
- Requires luck and engineering
 - Needs a good initial guess
 - ullet Improves when given gradient of J and Jacobian of $m{f}$ and $m{h}$.

Infrastructure: Linear Quadratic program

A special case of the optimization task:

$$\min rac{1}{2} oldsymbol{x}^T Q oldsymbol{x} + oldsymbol{c}^T oldsymbol{x} \quad ext{ subject to} \ oldsymbol{A} oldsymbol{x} \leq oldsymbol{b} \ F oldsymbol{x} = oldsymbol{g}$$

 \bullet When Q is positive definite and the problem is not very large the solution can always be found

Optimizing the Discrete Problem: Shooting

Consider the simplest form of a discrete control problem

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k$$

quadratic cost function

$$oldsymbol{J}_{oldsymbol{u}_0,...,oldsymbol{u}_{N-1}}(oldsymbol{x}_0) = oldsymbol{x}_N^T Q_N oldsymbol{x}_N + \sum_{k=0}^{N-1} (oldsymbol{x}_k^T Q_k oldsymbol{x}_k + oldsymbol{u}_k^T R_k oldsymbol{u}_k)$$

ullet Given u_0,\ldots,u_{N-1} , all the x_k 's can be found form the system dynamics:

$$x_2 = A_1x_1 + B_1u_1 + d_1 = A_1(A_0x_0 + B_0u_0 + d_0) + B_1u_1 + d_1$$

- ullet Problem equivalent to optimizing $J_{m{u}_0,...,m{u}_{N-1}}(m{x}_0)$ (which is quadratic) wrt. $m{u}_0,\dots,m{u}_{N-1}$
- This method is called shooting
- + A single linear-quadratic optimization problem
- + Easy to understand

Optimizing the Discrete Problem: Shooting

General case

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{f}_k(\boldsymbol{x}_k, \boldsymbol{u}_k) \\ J_{\boldsymbol{u} = (\boldsymbol{u}_0, \boldsymbol{u}_1, \dots, \boldsymbol{u}_{N-1})}(\boldsymbol{x}_0) &= c_f(t_0, \boldsymbol{x}_0, t_F, \boldsymbol{x}_F) + \sum_{k=0}^{N-1} c_k(\boldsymbol{x}_k, \boldsymbol{u}_k) \end{aligned}$$

• Get rid of all the x_k 's except x_0 :

$$x_2 = f(x_1, u_1) = f(f(x_0, u_0), u_1)$$

So just optimize $J_{m{u}=(m{u}_0,m{u}_1,...,m{u}_{N-1})}(m{x}_0)$ wrt. $m{u}$

- + Easy to understand
- A big, non-linear program (we cannot avoid that for general dynamics)
- ullet Unstable: small changes in $oldsymbol{u}_0$ can mean big changes in $oldsymbol{x}_N$
- Eulers method is imprecise
- - No bueno. To overcome these issues, we have to take a step back

The continuous-time control problem

Given system dynamics for a system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) \tag{5}$$

Step 1: Must evaluate this ODE somehow

Subject to a number of dynamical and constant path and end-point constraints, obtain $u:[t_0;t_F]\to\mathbb{R}^m$ as solution to

$$\min_{\substack{t_0,t_F, \boldsymbol{x}(t), \boldsymbol{u}(t)}} \underbrace{c_F\left(t_0, t_F, \boldsymbol{x}\left(t_0\right), \boldsymbol{x}\left(t_F\right)\right)}_{\text{Mayer Term}} + \underbrace{\int_{t_0}^{t_F} c(\boldsymbol{x}(\tau), \boldsymbol{u}(\tau), \tau) d\tau}_{\text{Lagrange Term}}$$

Step 3:

Minimize over all functions?

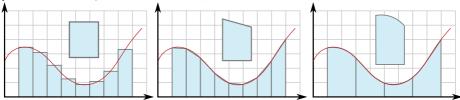
What about constraints?

subject to eq. (5) and whatever constraints are imposed on the system.

This is a nasty constrained minimization problem

Numerical integration

Suppose we wish to approximate a function f(x). Divide interval into a partition $a = x_0 < x_1 < \cdots < x_n = b$

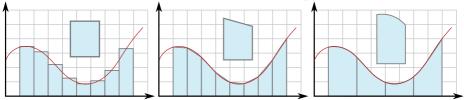


Choices corresponds to

- Piecewise constant
- Piecewise linear
- Piecewise 2nd order polynomial (use midpoint to fit the three parameters)

Approximation and integration

Each provide an approximation for the integral: $\int_a^b f(x) dx$



- Midpoint rule: $pprox \sum_{i=0}^{n-1} f\left(\frac{x_{i+1}+x_i}{2}\right) \Delta_i$
- Trapezoid rule: $\approx \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right)$
- Simpson's rule: $\approx \frac{\Delta x}{3}\left(f\left(x_{0}\right)+4f\left(x_{1}\right)+2f\left(x_{2}\right)+4f\left(x_{3}\right)+2f\left(x_{4}\right)+\cdots+4f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$

General Collocation: Time discretization

- ullet Given t_0 and t_F and N
- ullet We discretize the time into N intervals:

$$t_0 < t_1 < t_2 < \dots < t_{N-1} = t_F$$

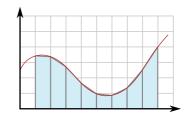
- ullet Specifically $t_k=t_0+rac{k}{N-1}(t_F-t_0)$
- For later use we define:

$$h_k = t_{k+1} - t_k, \quad k = 0, ..., N - 2$$

 $\boldsymbol{x}_k = \boldsymbol{x}(t_k), \quad k = 0, ..., N - 1$
 $\boldsymbol{u}_k = \boldsymbol{u}(t_k)$
 $c_k = c(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k)$
 $\boldsymbol{f}_k = \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k)$

Recap from last week

Trapezoid collocation



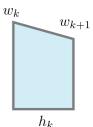
DTU

Trapezoid collocation assumes

$$\int_{t_0}^{t_F} c(\boldsymbol{x}(\tau), \boldsymbol{u}(\tau), \tau) d\tau \quad \approx \sum_{k=0}^{N-2} \frac{1}{2} h_k \left(c_k + c_{k+1} \right)$$

We can at this point evaluate the cost if we know x and u!

$$c_F\left(t_0, t_F, m{x}_0, m{x}_N
ight) + rac{1}{2} \sum_{k=0}^{N-2} h_k \left(c_k + c_{k+1}
ight)$$



Collocating system dynamics

Recall

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$$

Integrating both sides

$$\int_{t_k}^{t_{k+1}} \dot{\boldsymbol{x}}(t)dt = \int_{t_k}^{t_{k+1}} \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)dt$$

Using **trapezoid collocation** we on the right-hand side and integrating the left

$$oldsymbol{x}_{k+1} - oldsymbol{x}_k pprox rac{1}{2} h_k \left(oldsymbol{f}_{k+1} + oldsymbol{f}_k
ight)$$

Trapezoid collocation: System dynamics

Constraints are translated to simply apply to their knot points:

$$egin{array}{lll} x < 0 &
ightarrow & x_k < 0 \\ u < 0 &
ightarrow & u_k < 0 \\ oldsymbol{h}(t, oldsymbol{x}, oldsymbol{u}) < oldsymbol{0} &
ightarrow & oldsymbol{h}\left(t_k, oldsymbol{x}_k, oldsymbol{u}_k\right) < oldsymbol{0} \end{array}$$

• Boundary constraints still just apply at boundary:

$$\boldsymbol{g}\left(t_{0}, \boldsymbol{x}\left(t_{0}\right), \boldsymbol{u}\left(t_{0}\right)\right) < \boldsymbol{0} \quad \rightarrow \quad \boldsymbol{g}\left(t_{0}, \boldsymbol{x}_{0}, \boldsymbol{u}_{0}\right) < \boldsymbol{0}$$

Trapezoid collocation: First attempt

Optimize over $oldsymbol{z} = (oldsymbol{x}_0, oldsymbol{u}_0, \dots, oldsymbol{u}_{N-1}, t_0, t_f)$

$$\min_{z} \left[c_F(t_0, t_F, x_0, x_N) + \frac{1}{2} \sum_{k=0}^{N-2} h_k(c_k + c_{k+1}) \right]$$

Such that

$$egin{aligned} oldsymbol{h}\left(t_k, oldsymbol{x}_k, oldsymbol{u}_k
ight) < oldsymbol{0} \ oldsymbol{g}\left(t_0, t_F, oldsymbol{x}_0, oldsymbol{x}_F
ight) \leq oldsymbol{0} \end{aligned}$$

with convention we iteratively compute $oldsymbol{x}_{k+1}$ from $oldsymbol{x}_k$ starting at k=0

$$k = 0, ..., N - 2:$$
 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \frac{1}{2} h_k \left(\boldsymbol{f}_{k+1} + \boldsymbol{f}_k \right)$

Wait, did we just solve it?

Almost! The final idea:

- ullet Suppose we let $oldsymbol{x}_k, oldsymbol{u}_k$ vary freely (ensure everything can be evaluated)
- ullet But we add the N-1 constraints:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + rac{1}{2} h_k \left(oldsymbol{f}_{k+1} + oldsymbol{f}_k
ight)$$

ullet The key observation is local changes in $oldsymbol{x}_k$ and $oldsymbol{u}_k$ have local effects

Trapezoid collocation method

Optimize over $oldsymbol{z}=(oldsymbol{x}_0,oldsymbol{u}_0,oldsymbol{x}_1,oldsymbol{u}_1,\dots,oldsymbol{x}_{N-1},oldsymbol{u}_{N-1},t_0,t_F)$

$$\min_{z} \left[c_F(t_0, t_F, x_0, x_N) + \frac{1}{2} \sum_{k=0}^{N-2} h_k(c_k + c_{k+1}) \right]$$
 (6)

Such that
$$z_{\mathsf{lb}} \leq z \leq z_{\mathsf{ub}}$$
 (7)

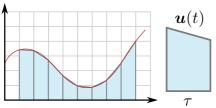
$$h\left(t_{k}, \boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \leq 0 \tag{8}$$

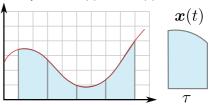
$$x_k - x_{k+1} + \frac{1}{2}h_k (f_{k+1} + f_k) = 0$$
 (9)

- ullet Optimizer also need initial point $oldsymbol{z}_0$
- ullet Recall $oldsymbol{f}_k = oldsymbol{f}(oldsymbol{x}_k, oldsymbol{u}_k, t_k)$ so last constraint is non-linear

Reconstruction

Given z, how do we reconstruct the (predicted) path x(t) and u(t)?





• u(t) was assumed to be linear, using $\tau = t - t_k$:

$$oldsymbol{u}(t)pproxoldsymbol{u}_k+rac{ au}{h_k}\left(oldsymbol{u}_{k+1}-oldsymbol{u}_k
ight)$$

ullet For $oldsymbol{x}(t)$ we assumed

$$\dot{oldsymbol{x}}(t)pproxoldsymbol{f}_k+rac{ au}{h_k}\left(oldsymbol{f}_{k+1}-oldsymbol{f}_k
ight)$$

ullet Integrating both sides and using $oldsymbol{x}(oldsymbol{t}_k) = oldsymbol{x}_k$

$$oldsymbol{x}(t) = oldsymbol{x}_k + oldsymbol{f}_k au + rac{ au^2}{2h_k} \left(oldsymbol{f}_{k+1} - oldsymbol{f}_k
ight)$$

Implementation

Algorithm 1 Direct solver

- 1: function Direct-Solve(N, guess= $(t_0^g, t_F^g, \boldsymbol{x}^g, \boldsymbol{u}^g)$)
- 2: Define $z \leftarrow (\boldsymbol{x}_0, \boldsymbol{u}_0, \dots, \boldsymbol{x}_{N-1}, \boldsymbol{u}_{N-1}, t_0, t_F)$ as all optimization variables
- 3: Define grid time points $t_k = \frac{k}{N-1}(t_F t_0) + t_0, \quad k = 0, \dots, N-1 \quad \text{peq. (15.11)}$
- 4: Define h_k , $\boldsymbol{f}_k = \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k)$ and $c_k = c(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k)$.
- 5: Define I_{eq} and I_{ineq} as empty lists of inequality/equality constraints
- 6: **for** k = 0, ..., N-2 **do**
- 7: Append constraint $x_{k+1}-x_k=rac{h_k}{2}(m{f}_{k+1}+m{f}_k)$ to $I_{\sf eq}$ ho eq. (15.20)
- 8: Add all other path-constraints eq. (15.21) to $I_{\rm ineq}$ and $I_{\rm eq}$
- 9: end for
- 10: Add possible end-point constraints on $m{x}_0, m{x}_F$ and t_0, t_F to $I_{\sf eq}$ and $I_{\sf ineq}$
- 11: Build optimization target $E(z) = c_f(t_0, t_F, x_0, x_{N-1}) + \sum_{k=0}^{N-2} \frac{h_k}{2} (c_{k+1} + c_k)$
- 12: Construct guess time-grid: $t_k^g \leftarrow \frac{k}{N-1}(t_E^g t_0^g) + t_0^g$
- 13: Construct guess states $\boldsymbol{z}^g \leftarrow (\boldsymbol{x}^g(t_0^g), \boldsymbol{u}^g(t_0^g), \cdots, \boldsymbol{x}^g(t_{N-1}^g), \boldsymbol{u}^g(t_{N-1}^g), t_0^g, t_F^g)$
- 14: Let z^* be minimum of E optimized over z subject to I_i and I_{eq} using guess z^g
- 15: Re-construct $u^*(t), x^*(t)$ from z^* using eq. (15.22) and eq. (15.26)
- 16: Return $\boldsymbol{u}^*, \boldsymbol{x}^*$ and t_0^*, t_F^*
- 17: end function

Making it work well

- ullet For small N, method is imprecise, but less sensitive to $oldsymbol{z}_0$
- ullet For moderate N, method is **very** sensitive to $oldsymbol{z}_0$
- ullet Initially we do linear interpolation to get $oldsymbol{z}_0$
- ullet An idea is to use an optimizer for low value of N, obtain solution $oldsymbol{z}'$
- ullet From this $oldsymbol{z}'$, we can construct $oldsymbol{x}'(t)$ and $oldsymbol{u}'(t)$
- ullet We run optimizer with higher N and an initial guess as $oldsymbol{x}_k = oldsymbol{x}'(t_k)$

Implementation

Algorithm 2 Iterative direct solver

Require: An initial guess $\pmb{z}_0^g = (\pmb{x}^g, \pmb{u}^g, t_0^g, t_F^g)$ found using simple linear interpolation

Require: A sequence of grid sizes $10 \approx N_0 < N_1 < \cdots < N_T$

- 1: **for** t = 0, T **do**
- 2: $\boldsymbol{x}^*, \boldsymbol{u}^*, t_0^*, t_F^* \leftarrow \text{Direct-Solve}(N_t, \boldsymbol{z}_t^g)$
- 3: $\boldsymbol{z}_{t+1} \leftarrow \boldsymbol{x}^*, \boldsymbol{u}^*, t_0^*, t_F^*$
- 4: end for
- 5: Return $oldsymbol{u}^*, oldsymbol{x}^*$ and t_0^* , t_F^*

Implementation:


```
# sample.py
 1
     ineq cons = {'type': 'ineq',
                   'fun': lambda x: np.array([1 - x[0] - 2 * x[1],
 3
                                              1 - x[0] ** 2 - x[1].
                                              1 - x[0] ** 2 + x[1]]).
                   'jac': lambda x: np.array([[-1.0, -2.0],
                                              [-2 * x[0], -1.0].
                                              [-2 * x[0], 1.0]])
 8
     eq cons = {'type': 'eq',
 9
                 'fun': lambda x: np.array([2 * x[0] + x[1] - 1]),
10
                 'jac': lambda x: np.array([2.0, 1.0])}
11
     from scipy.optimize import Bounds
12
     z_1b, z_ub = [0, -0.5], [1.0, 2.0]
13
     bounds = Bounds(z lb, z ub) # Bounds(z low, z up)
14
     z0 = np.array([0.5, 0])
15
     res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,
16
                    constraints=[eq cons, ineq cons], bounds=bounds)
17
```

We use sympy because of the gradient/Jacobians

Recap from last week

Example: Pendulum

Example: Cartpole, the Kelly task

Task is taken from the excellent [Kel17]

- Constraints: $t_0=0, t_F=2$, end-point constraints ${m x}_0$ and ${m x}_F={m x}^g$ and -20 < u(t) < 20
- $\bullet \ c(\boldsymbol{x},\boldsymbol{u},t) = u(t)^2$
- ullet Grid refinement: N=10 then N=60
- lecture_05_cartpole_kelly

Example: Cartpole, the minimum-time task

From the (also great!) https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m

- Constraints: $t_0=0, t_F>0$, end-point constraints ${m x}_0$ and ${m x}_F={m x}^g$ and -50 < u(t) < 50
- $\bullet c(\boldsymbol{x}, \boldsymbol{u}, t) = t_F t_0$
- N = 8, 16, 32, 70
- lecture_05_cartpole_time

Optimizing the Discrete Problem - Collocation

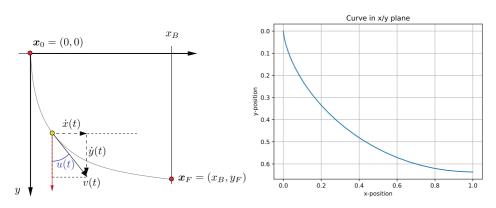
We can also optimize over both action/state values

The optimisation problem is then defined as

$$\begin{aligned} & \text{minimize} & & \boldsymbol{x}_N^T Q_N \boldsymbol{x}_N + \sum_{k=0}^{N-1} (\boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \boldsymbol{u}_k^T R_k \boldsymbol{u}_k) \\ & \text{subject to} & & F' \boldsymbol{x} \leq \boldsymbol{h}' \\ & & & F'' \boldsymbol{x} \leq \boldsymbol{h}'' \\ & & & & A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k - \boldsymbol{x}_{k+1} = 0 \end{aligned}$$

Example: Brachistochrone

What is the fastest path for a bead to travel x_B distance in the x-direction?



- Cost: $\min t_F$
- Actions is the angle u(t). Dynamics:

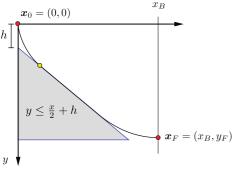
$$\dot{x} = v \sin u, \quad \dot{y} = v \cos u, \quad \dot{v} = g \cos u$$
 (10)

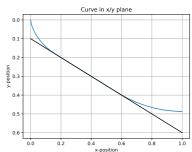
End-point constraints

 $x(0) = y(0) = v(0) = 0, \quad x(t_F) = x_B$ Lecture 5 1 March, 2024

Example: Brachistochrone with dynamical constraints

Same as before but bead cannot pass through solid object





Dynamical constraint

$$h(x) = y - \frac{x}{2} - h \le 0 \tag{11}$$

Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

$$\int_{t_0}^{t_F} c(\tau)d\tau \approx \sum_{k=0}^{N-1} \frac{h_k}{6} \left(c_k + 4c_{k+\frac{1}{2}} + c_{k+1} \right)$$

For dynamics

$$m{x}_{k+1} - m{x}_k = rac{1}{6} h_k \left(m{f}_k + 4 m{f}_{k+rac{1}{2}} + m{f}_{k+1}
ight)$$

- ullet Generally better for small N
- ullet Scales worse in N

🔋 Tue Herlau.

Sequential decision making. (Freely available online), 2024.

Matthew Kelly.

An introduction to trajectory optimization: How to do your own direct collocation.

SIAM Review, 59(4):849–904, 2017.

(See kelly2017.pdf).