

02465: Introduction to reinforcement learning and control

Linearization and iterative LQR

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

- 1 The finite-horizon decision problem 2 February
- 2 Dynamical Programming 9 February
- 3 DP reformulations and introduction to Control

16 February

Control

- Discretization and PID control 23 February
- 6 Direct methods and control by optimization

1 March

- 6 Linear-quadratic problems in control 8 March
- Linearization and iterative LQR

15 March

Reinforcement learning

- 8 Exploration and Bandits 22 March
- Opening Policy and value iteration 5 April
- Monte-carlo methods and TD learning 12 April
- Model-Free Control with tabular and linear methods 19 April
- Eligibility traces and value-function approximations 26 April
- Q-learning and deep-Q learning 3 May

DTU Compute Lecture 7 15 March, 2024

Syllabus: https://02465material.pages.compute.dtu.dk/02465public

Help improve lecture by giving feedback on DTU learn

Housekeeping

- Old exam sets online
- Most of the feedback for project 1 is online on DTU Learn
 - The rest will be available in a few days

A bit of analysis

- ullet Suppose $f:\mathbb{R}^n o \mathbb{R}$ is a well-behaved function
- The gradient is defined as:

$$abla f(oldsymbol{x}) = \left[egin{array}{c} rac{\partial f}{\partial x_1}(oldsymbol{x}) \ dots \ rac{\partial f}{\partial x_n}(oldsymbol{x}) \end{array}
ight]$$

• The **Hessian** is defined as

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

More analysis

ullet Let $f:\mathbb{R}^n o\mathbb{R}^m$ be a well-behaved multi-variate function defined as

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

• The Jacobian matrix is defined as:

$$oldsymbol{J_f}(oldsymbol{x}) = \left[egin{array}{ccc} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{array}
ight] = \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight]$$

Approximations

ullet Given the gradient and Hessian we can approximate f around $oldsymbol{x}$

$$f(\mathbf{x} + \Delta) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \Delta + \frac{1}{2} \Delta^{\mathrm{T}} \mathbf{H}(\mathbf{x}) \Delta$$

• A similar expression can be obtained for a multi-variate f:

$$\mathbf{f}(\mathbf{x} + \mathbf{\Delta}) \approx \mathbf{f}(\mathbf{x}) + \mathbf{J}_{\mathbf{f}}(\mathbf{x})\mathbf{\Delta}$$

Fundamental relations that are the basis for gradient descent, many higher-order optimization methods and all sorts of ML

• For $k = 0, 1, \dots, N-1$

$$\begin{split} x_{k+1} &= f_k(x_k, u_k, w_k) = A_k x_k + B_k u_k, \\ g_k(x_k, u_k, w_k) &= \frac{1}{2} x_k^\top Q_k x_k + \frac{1}{2} u_k^\top R_k u_k, \\ g_N(x_k) &= \frac{1}{2} x_N^\top Q_N x_N \end{split}$$

The accumulated cost is:

$$J_{\boldsymbol{u}}(\boldsymbol{x}_0) = g_N(\boldsymbol{x}_N) + \sum_{k=0}^{N-1} g_k(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

• We put this into the dynamical programming algorithm and...

Apply dynamical programming:

• Define $V_N \equiv Q_N$ and initialize:

$$J_N^*\left(\boldsymbol{x}_N\right) = \frac{1}{2}\boldsymbol{x}_N^TQ_N\boldsymbol{x}_N = \frac{1}{2}\boldsymbol{x}_N^TV_N\boldsymbol{x}_N$$

• DP iteration (start at k = N - 1)

$$J_{k}\left(\boldsymbol{x}_{k}\right) = \min_{\boldsymbol{u}_{k}} \mathop{\mathbb{E}}_{w_{k}} \left\{ g_{k}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, w_{k}\right) + J_{k+1}\left(f_{k}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, w_{k}\right)\right) \right\}$$

• Remember to store optimal u_k^* as $\pi_k(x_k) = u_k^*$

LQR, simplified form

This gives the controller:

1
$$V_N = Q_N$$

$$\mathbf{4} \, \boldsymbol{u}_k^* = L_k \boldsymbol{x}_k$$

$$\mathbf{6} J_k^*(oldsymbol{x}_k) = rac{1}{2} oldsymbol{x}_k^T V_k oldsymbol{x}_k$$

Double Integrator Example

• True dynamics

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{u}(t) \tag{1}$$

• Euler discretization using $\Delta=1$ System evolves according to:

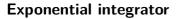
$$oldsymbol{x}_{k+1} = \underbrace{egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}}_{=A} oldsymbol{x}_k + \underbrace{egin{bmatrix} 0 \ 1 \end{bmatrix}}_{=B} oldsymbol{u}_k$$

Quadratic cost function:

$$J(oldsymbol{x}_0) = \sum_{k=0}^N oldsymbol{x}_k^ op Q oldsymbol{x}_k + rac{1}{2}u_k^2$$

Where:

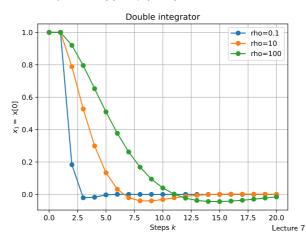
$$Q_k = Q_N = \begin{bmatrix} \frac{1}{\rho} & 0\\ 0 & 0 \end{bmatrix}, \quad R = 1$$



- Apply discrete LQR
- ullet Simulate starting in $oldsymbol{x}_0 = egin{bmatrix} 1 \\ 0 \end{bmatrix}$ using policy

$$\pi_k(\boldsymbol{x}_k) = L_k \boldsymbol{x}_k$$

• What about the true system $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})$?



The most general form of LQR

• General dynamics:

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k$$

• General quadratic cost:

$$c_k \left(\boldsymbol{x}_k, \boldsymbol{u}_k \right) = \frac{1}{2} \boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \frac{1}{2} \boldsymbol{u}_k^T R_k \boldsymbol{u}_k + \boldsymbol{u}_k^T H_k \boldsymbol{x}_k + \boldsymbol{q}_k^T \boldsymbol{x}_k + \boldsymbol{r}_k^T \boldsymbol{u}_k + q_k$$

$$c_N \left(\boldsymbol{x}_k \right) = \frac{1}{2} \boldsymbol{x}_k^T Q_N \boldsymbol{x}_k + \boldsymbol{q}_N^T \boldsymbol{x}_k + q_N$$

General discrete LQR algorithm

How to start living in luxury and never work again!

 $\cdots (V_{k+1} + \mu I) \cdots$

1.
$$V_N = Q_N$$
; $v_N = q_N$; $v_N = q_N$

2.
$$L_k = -S_{\boldsymbol{u}\boldsymbol{u},k}^{-1} S_{\boldsymbol{u}\boldsymbol{x},k}$$

$$l_k = -S_{\boldsymbol{u}\boldsymbol{u},k}^{-1} S_{\boldsymbol{u},k}$$

$$S_{\boldsymbol{u},k} = \boldsymbol{r}_k + B_k^T \boldsymbol{V}_{k+1} + B_k^T \boldsymbol{V}_{k+1} \boldsymbol{d}_k$$

$$S_{\boldsymbol{u}\boldsymbol{u},k} = R_k + B_k^T \boldsymbol{V}_{k+1} B_k$$

$$S_{\boldsymbol{u}\boldsymbol{x},k} = H_k + B_k^T \boldsymbol{V}_{k+1} A_k.$$

1.
$$V_{N} = Q_{N}$$
; $\boldsymbol{v}_{N} = \boldsymbol{q}_{N}$; $v_{N} = q_{N}$
2.
$$L_{k} = -S_{\boldsymbol{u}\boldsymbol{u},k}^{-1}S_{\boldsymbol{u}\boldsymbol{x},k}$$

$$\boldsymbol{l}_{k} = -S_{\boldsymbol{u}\boldsymbol{u},k}^{-1}S_{\boldsymbol{u}\boldsymbol{x},k}$$

$$S_{\boldsymbol{u}\boldsymbol{u},k} = R_{k} + B_{k}^{T}V_{k+1} + B_{k}^{T}V_{k+1}\boldsymbol{d}_{k}$$

$$S_{\boldsymbol{u}\boldsymbol{u},k} = R_{k} + B_{k}^{T}V_{k+1}B_{k}$$

$$S_{\boldsymbol{u}\boldsymbol{x},k} = H_{k} + B_{k}^{T}V_{k+1}A_{k}.$$
3.
$$V_{k} = Q_{k} + A_{k}^{T}V_{k+1}A_{k} - L_{k}^{T}S_{\boldsymbol{u}\boldsymbol{u},k}L_{k}$$

$$\boldsymbol{v}_{k} = \boldsymbol{q}_{k} + A_{k}^{T}(\boldsymbol{v}_{k+1} + V_{k+1}\boldsymbol{d}_{k}) + S_{\boldsymbol{u}\boldsymbol{x},k}^{T}\boldsymbol{l}_{k}$$

$$v_{k} = v_{k+1} + q_{k} + \boldsymbol{d}_{k}^{T}\boldsymbol{v}_{k+1} + \frac{1}{2}\boldsymbol{d}_{k}^{T}V_{k+1}\boldsymbol{d}_{k} + \frac{1}{2}\boldsymbol{l}_{k}^{T}S_{\boldsymbol{u},k}$$

$$4. \ \boldsymbol{u}_k^* = \boldsymbol{l}_k + L_k \boldsymbol{x}_k$$

5.
$$J_k(\boldsymbol{x}_k) = \frac{1}{2} \boldsymbol{x}_k^T V_k \boldsymbol{x}_k + \boldsymbol{v}_k^T \boldsymbol{x}_k + v_k$$
.

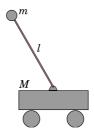
(more seriously μ is a regularization term: $\mu \to \infty \Rightarrow u \to 0$)

Quiz: LQR

Which one of the following statements is correct?

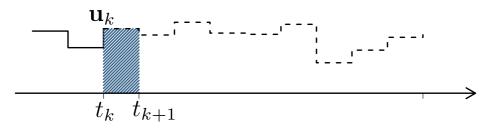
- **a.** Control problems where the continuous-time dynamics takes the form $\ddot{x}=a\dot{x}+bx+c+u$ falls outside the scope of the linear quadratic regulator
- b. The linear-quadratic regulator is an example of model-free control
- **c.** In a linear-quadratic control problem of the form $x_{k+1} = Ax_k + Bu_k$, the matrices A and B must both be square.
- **d.** The cost-functions suitable for a linear-quadratic regulator can potentially produce negative values
- e. Don't know.

Controlling non-linear systems: Cartpole



- ullet Continuous coordinates $m{x}(t) = egin{bmatrix} x(t) & \dot{x}(t) & \dot{ heta}(t) & \dot{ heta}(t) \end{bmatrix}$
- ullet Action u is one-dimensional; the force applied to cart

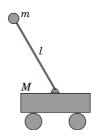
Discretization



- Choose grid size N: $t_0, t_1, \ldots, t_N = t_F$, $t_{k+1} t_k = \Delta$
- $\bullet \ \boldsymbol{x}_k = \boldsymbol{x}(t_k), \boldsymbol{u}_k = \boldsymbol{u}(t_k)$
- ullet Eulers method $oldsymbol{x}_{k+1} = oldsymbol{x}_k + \Delta f(oldsymbol{x}_k, oldsymbol{u}_k)$
- Discretized dynamics will have the form:

$$\boldsymbol{x}_{k+1} = \boldsymbol{f}_k(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

Cartpole cost function



• We also apply a variable transformation:

$$\phi_x : \begin{bmatrix} x & \dot{x} & \theta & \dot{\theta} \end{bmatrix} \mapsto \begin{bmatrix} x & \dot{x} & \sin(\theta) & \cos(\theta) & \dot{\theta} \end{bmatrix}.$$
 (2)

• The cost function is of the form:

$$c(oldsymbol{x}_k, oldsymbol{u}_k) = rac{1}{2} \left(oldsymbol{x} - egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}
ight)^{ ext{T}} Q \left(oldsymbol{x} - egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}
ight) + rac{1}{2} \|oldsymbol{u}_k\|^2$$

Controlling a non-linear system

• We know how to solve a linear/quadratic control problems of the form

$$egin{aligned} oldsymbol{x}_{k+1} &= A_k oldsymbol{x}_k + B_k oldsymbol{u}_k + oldsymbol{d}_k \ c_k(oldsymbol{x}_k, oldsymbol{u}_k) &= rac{1}{2} oldsymbol{x}_k^ op Q oldsymbol{x}_k^+ rac{1}{2} oldsymbol{u}_k^ op R oldsymbol{u}_k + \cdots \end{aligned}$$

• How can we use that to solve a problem with non-linear dynamics?

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{f}_k(oldsymbol{x}_k, oldsymbol{u}_k) \ oldsymbol{c}_k(oldsymbol{x}_k, oldsymbol{u}_k) &= \cdots \end{aligned}$$

Solution: Linearization!

Assume a general dynamics:

$$\boldsymbol{x}_{k+1} = \boldsymbol{f}_k \left(\boldsymbol{x}_k, \boldsymbol{u}_k \right), \quad c \left(\boldsymbol{x}_k, \boldsymbol{u}_k \right)$$

Assume system is near \bar{x} , \bar{u} . Expand using **Jacobians**

$$m{f}_k(m{x}_k,m{u}_k)pprox m{f}_k(ar{m{x}},ar{m{u}}) + \underbrace{rac{\partial m{f}_k}{\partial m{x}}(ar{m{x}},ar{m{u}})}_{A_k}(m{x}_k-ar{m{x}}) + \underbrace{rac{\partial m{f}_k}{\partial m{u}}(ar{m{x}},ar{m{u}})}_{B_k}(m{u}_k-ar{m{u}})$$

Simplifies to:

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{f}_k(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}) - A_k \bar{\boldsymbol{x}} - B_k \bar{\boldsymbol{u}}$$

Linearization and iLQR

Algorithm 1 Linearized LQR

Require: Given a problem horizon N, and an expansion point (\bar{x}, \bar{u}) corresponding to where the system should be

Compute A_k, B_k, d_k by expansion

Cost function is the same as usual because it is already quadratic

Use LQR, with dynamics A_k, B_k, d_k and cost matrices Q_k, R_k, q_k to obtain controller L_k, l_k for k = 0, ..., N - 1.

In a state $m{x}_k$, the control law is $m{u}_k^* = ar{m{l}}_k + L_k m{x}_k$

- ullet Select expansion point $ar{x}, ar{u}$ as desired state
- ullet Usually $A_k=A, B_k=B$ so just choose a large N and use $L_0, {m l}_0$

lecture_06_linearize_b.py

Quiz: Linearized LQR?

Which one of the following statements is **correct**?

- a. We should apply Exponential Integration to the linearized dynamics $A_k (= J_{m x} {m f}_k(\bar{{m x}}, \bar{{m u}}))$ and B_k before applying LQR
- **b.** Assuming Δ is small enough, the error incurred by Euler discretization can be managed.
- **c.** Assuming we plan on a sufficiently long horizon, the linear approximation to the dynamics does not result in major issues
- **d.** This is a computationally inefficient method compared to e.g. Direct control
- e. Don't know

(Note: Quiz changed from lecture due to double-negation of answers being beyond my abilities; In the lecture, option a was actually the right option, but I read it incorrectly and thought I had an error. In this formulation quiz, option b is correct)

Fixing linearization method

- ullet Problem: The system may be far from $ar{x}, ar{u}$ giving a poor approximation
- Idea: Select expansion points $ar{m{x}},ar{m{u}}$ near current trajectory $m{x}_k,m{u}_k$
- How?
 - ullet Start with initial guess $ar{m{x}}_k, ar{m{u}}_k$ (nominal trajectory)
 - Approximate around this guess
 - Use LQR on approximation to get initial control law
 - Simulate trajectory based on this control law
 - Use the trajectory as a new guess and repeat

LQR Tracking around Nonlinear Trajectory

Given initial guess $\bar{\boldsymbol{x}}_k, \bar{\boldsymbol{u}}_k$ (nominal trajectory) for $k=1,2,\ldots,N-1$

$$oldsymbol{x}_{k+1}pprox oldsymbol{f}_{\overline{oldsymbol{x}}_{k+1}} + oldsymbol{\underbrace{rac{\partial oldsymbol{f}_k}{\partial oldsymbol{x}}\left(\overline{oldsymbol{x}}_k, \overline{oldsymbol{u}}_k
ight)}_{A_k} oldsymbol{\underbrace{\left(oldsymbol{x}_k - \overline{oldsymbol{x}}_k
ight)}_{\delta oldsymbol{x}}} + oldsymbol{\underbrace{rac{\partial oldsymbol{f}_k}{\partial oldsymbol{u}}\left(\overline{oldsymbol{x}}_k, \overline{oldsymbol{u}}_k
ight)}_{B_k} oldsymbol{\underbrace{\left(oldsymbol{u}_k - \overline{oldsymbol{u}}_k
ight)}_{\delta oldsymbol{u}}}$$

Introduce new variables signifying deviation around the nominal trajectory:

$$\delta \boldsymbol{x}_k = \boldsymbol{x}_k - \bar{\boldsymbol{x}}_k, \quad \delta \boldsymbol{u}_k = \boldsymbol{u}_k - \bar{\boldsymbol{u}}_k.$$

Back-substituting gives:

$$\delta \boldsymbol{x}_{k+1} = A_k \delta \boldsymbol{x}_k + B_k \delta \boldsymbol{u}_k$$

Expansion of the cost function

We then expand the cost-function around: $m{z}_k = egin{bmatrix} m{x}_k \\ m{u}_k \end{bmatrix}$ and $ar{m{z}} = egin{bmatrix} ar{m{u}} \\ ar{m{u}} \end{bmatrix}$:

$$c_k(oldsymbol{x}_k,oldsymbol{u}_k) pprox c_k(ar{oldsymbol{x}},ar{oldsymbol{u}}) + (
abla_{oldsymbol{z}}c_k(ar{oldsymbol{x}},ar{oldsymbol{u}}))^ op (oldsymbol{z}_k - ar{oldsymbol{z}}) + rac{1}{2}(oldsymbol{z}_k - ar{oldsymbol{z}})^ op H_{ar{oldsymbol{z}}}(oldsymbol{z}_k - ar{oldsymbol{z}})$$

Multiplying out all the terms gives a quadratic approximation in the δ -coordinates

$$c_{k} = c_{k}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}})$$

$$c_{x,k} = \nabla_{\boldsymbol{x}} c_{k}(\bar{\boldsymbol{x}}, \bar{\bar{\boldsymbol{u}}}), \quad c_{u,k} = \nabla_{\boldsymbol{u}} c_{k}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}})$$

$$c_{xx,k} = H_{\boldsymbol{x}} c_{k}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}), \quad c_{uu,k} = H_{\boldsymbol{u}} c_{k}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}})$$

$$c_{ux,k} = J_{\boldsymbol{x}} \nabla_{\boldsymbol{u}} c_{k}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}})$$

Expansion of the cost function

all in all we get a quadratic cost function:

$$c_k(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k) = \frac{1}{2} \delta \boldsymbol{x}_k^{\top} c_{\boldsymbol{x}\boldsymbol{x},k} \delta \boldsymbol{x}_k + c_{\boldsymbol{x},k}^{\top} \delta \boldsymbol{x}_k$$
$$+ \frac{1}{2} \delta \boldsymbol{u}_k^{\top} c_{\boldsymbol{u}\boldsymbol{u},k} \delta \boldsymbol{u}_k + c_{\boldsymbol{u},k}^{\top} \delta \boldsymbol{u}_k + \delta \boldsymbol{u}_k^{\top} c_{\boldsymbol{u}\boldsymbol{x},k} \delta \boldsymbol{x}_k + c_k$$
$$c_N(\delta \boldsymbol{x}_N) = \frac{1}{2} \delta \boldsymbol{x}_N^{\top} c_{\boldsymbol{x}\boldsymbol{x},N} \delta \boldsymbol{x}_N + c_{\boldsymbol{x},N}^{\top} \delta \boldsymbol{x}_N + c_N$$

Linearized solution to actual controls

- Put linearized problem into LQR
- Once problem is solved, new control inputs obey

$$\delta \boldsymbol{u}_k^* = \boldsymbol{l}_k + L_k \delta \boldsymbol{x}_k$$

Rearranging

$$(\boldsymbol{u}_k^* - \bar{\boldsymbol{u}}_k) = \boldsymbol{l}_k + L_k(\boldsymbol{x}_k - \bar{\boldsymbol{x}}_k)$$

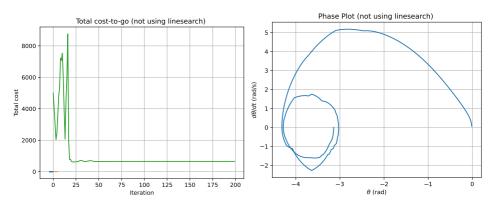
Or

$$\boldsymbol{u}_k^* = \bar{\boldsymbol{u}}_k + \boldsymbol{l}_k + L_k(\boldsymbol{x}_k - \bar{\boldsymbol{x}}_k)$$

Algorithm 2 Basic iLQR

```
Require: Given initial state x_0
 1: Set \bar{x}_k = x_0, \bar{u}_k = 0 (or a random vector), L_k = 0 and l_k = 0
 2: \bar{x}_k, \bar{u}_k \leftarrow \text{FORWARD-PASS}(\bar{x}_k, \bar{u}_k, L_k, l_k) \Rightarrow \text{Compute initial nominal trajectory using}
     ea. (17.10).
 3: for i=0 to a pre-specified number of iterations do
          A_k, B_k, c_k, c_{r,k}, c_{u,k}, c_{rr,k}, c_{ur,k}, c_{uu,k} \leftarrow \text{Get-derivatives}(\bar{\boldsymbol{x}}_k, \bar{\boldsymbol{u}}_k)
       L_k, l_k \leftarrow \text{Backward-Pass}(A_k, B_k, c_k, c_{r,k}, c_{n,k}, c_{rr,k}, c_{nr,k}, c_{nr,k}, c_{nn,k}, \mu)
          J^{(i)} \leftarrow \text{Cost-of-trajectory}(\bar{x}_h, \bar{u}_h)
          \bar{x}_{k}, \bar{u}_{k} \leftarrow \text{Forward-Pass}(\bar{x}_{k}, \bar{u}_{k}, L_{k}, l_{k})
 8 end for
 9: Compute control law \pi_k(\boldsymbol{x}_k) = \bar{\boldsymbol{u}}_k + \bar{\boldsymbol{l}}_k + L_k(\boldsymbol{x}_k - \bar{\boldsymbol{x}}_k)
10: return \{\pi_k\}_{k=0}^{N-1}
11: function FORWARD-PASS(\bar{x}_k, \bar{u}_k, L_k, l_k)
                                                                                   Set x_0 = \bar{x}_0
12:
          for all k = 0, ..., N-1 do
13.
               u_k^* \leftarrow \bar{u}_k + L_k(x_k - \bar{x}_k) + l_k
                                                                                                            ⊳ see ea. (17.16)
14:
15:
            \mathbf{x}_{k+1} \leftarrow f_k(\mathbf{x}_k, \mathbf{u}_k^*)
          end for
16.
          return x_k, u_k^*
17:
18: end function
19: function Backward-Pass(A_k, B_k, c_k, c_{x,k}, c_{u,k}, c_{xx,k}, c_{ux,k}, c_{uu,k}, \mu) eq. (17.14)
           Compute L_k, l_k using dLQR with \mu, algorithm 22
                                                                                                      Dobtain control law
21: end function
22: function Cost-of-trajectory (\bar{x}_k, \bar{u}_k)
          return c_N(\bar{\boldsymbol{x}}_N) + \sum_{k=0}^{N-1} c_k(\bar{\boldsymbol{x}}_k, \bar{\boldsymbol{u}}_k)
24: end function
```


Pendulum starts at $\theta=\pi$ and $\dot{\theta}=0$ and controller tries to swing it up $\theta=0$



lecture_06_pendulum_bilqr_L

lecture_06_pendulum_bilqr_ubar

Iterative LQR

Basic iLQR is not very numerically stable. iLQR adds two ideas:

- Use regularization to stabilize the discrete LQR algorithm (μ)
- Search for policies that are **close** to the old ones. Recall:

$$\boldsymbol{u}_k^* = \overline{\boldsymbol{u}}_k + l_k + L_k(\boldsymbol{x}_k - \overline{\boldsymbol{x}}_k)$$

- Since $(x_k \overline{x}_k)$ assumed small (and L_k stabilized by μ), decreasing l_k means new control closer to old.
- Specifically, introduce $0 \le \alpha \le 1$

$$\boldsymbol{u}_k^* = \overline{\boldsymbol{u}}_k + \alpha l_k + L_k(\boldsymbol{x}_k - \overline{\boldsymbol{x}}_k)$$

Iterative LQR Procedure

- ullet Initialize regularization parameter to a fairly low value μ
- In the forward pass try smaller and smaller changes to trajectory (α -values)
- For each α -value check if the cost $J^{(i)}$ decreases relative to $J^{(i-1)}$. If so, accept this α and decrease the regularization parameter μ by a small amount
- If no α -value works, increase the regularization parameter μ by a small amount

iLQR Algorithm

Algorithm 3 iLQR

```
Require: Given initial state x_0
 1: \mu_{\min} \leftarrow 10^{-6}, \mu_{\max} \leftarrow 10^{10}, \mu \leftarrow 1, \Delta_0 \leftarrow 2 and \Delta \leftarrow \Delta_0
 2: Initialize \bar{m{x}}_k, \bar{m{u}}_k as before
 3: for i=0 to a pre-specified number of iterations do
          A_k, B_k, c_k, c_{x,k}, c_{u,k}, c_{xx,k}, c_{ux,k}, c_{uu,k} \leftarrow \text{Get-derivatives}(\bar{x}_k, \bar{u}_k)
          L_k, l_k \leftarrow \text{Backward-Pass}(A_k, B_k, c_k, c_{r,k}, c_{u,k}, c_{rr,k}, c_{ur,k}, c_{uu,k}, \mu)
 5:
          J' \leftarrow \text{Cost-of-trajectory}(\bar{x}_k, \bar{u}_k)
          for \alpha=1 to a very low value do
                \hat{x}_k, \hat{u}_k \leftarrow \text{Forward-Pass}(\bar{x}_k, \bar{u}_k, L_k, l_k, \alpha)
 8:
                J^{\text{new}} \leftarrow \text{Cost-of-trajectory}(\hat{x}_k, \hat{u}_k)
 9:
                if J^{\text{new}} < J' then
10.
                    if \frac{1}{T}|J^{\text{new}} - J'| < \text{a small number then}
11:
                          Method has converged, terminate outer loop and return
12:
                    end if
13:
                    I' \leftarrow I^{\text{new}}
14:
15.
                    \bar{x}_{\iota} \leftarrow \hat{x_{\iota}} and \bar{u}_{\iota} \leftarrow \hat{u_{\iota}}
                    \alpha accepted: Update \Delta and \mu using eq. (17.19)
                                                                                                16.
                    Break loop over \alpha
17:
               end if
18:
          end for
19:
20:
          if No \alpha-value was accepted then
21:
                Update \Delta and \mu using eq. (17.18)
                                                                                                ▷ Increase regularization
          end if
22.
23: end for
24: Compute controller \{\pi_k\}_{k=0}^{N-1} as before from L_k, \boldsymbol{l}_k
```

lecture_06_pendulum_ilqr_L

lecture_06_pendulum_ilqr_ubar

DTU Compute
lecture_06_cartpole

Iterative LQR

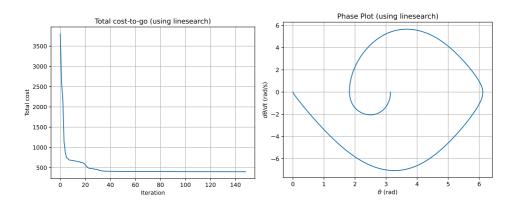
Given \boldsymbol{x}_0 and f_k , c_k , c_N ; initialize $\overline{\boldsymbol{u}}_k$

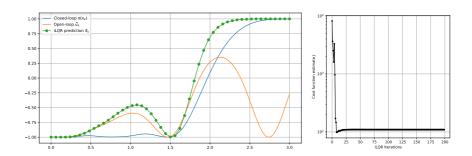
- ullet Simulate \overline{x}_k and compute matrices for linearized problem as well as cost $J_{\overline{m{u}}}(\overline{x}_0)$
- ullet Solve for $\delta oldsymbol{u}_k^*$ using regularization μ
- Loop over α starting at $\alpha=1$
 - ullet Obtain controls $oldsymbol{u}_k^*$ with lpha (see [TET12, Eq.(12)])

$$\boldsymbol{u}_k^* = \overline{\boldsymbol{u}}_k + \alpha l_k + L_k (\boldsymbol{x}_k - \overline{\boldsymbol{x}}_k) \tag{7}$$

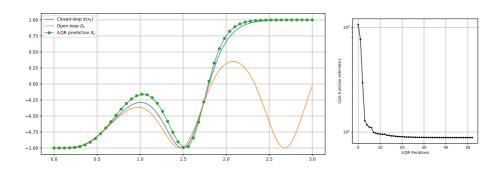
- If cost $J_{\boldsymbol{u}^*}(\boldsymbol{x}_0) < J_{\overline{\boldsymbol{u}}}(\overline{x}_0)$ accept $\alpha/\text{decrease}~\mu$
- (On failure to find α increase regularization μ)

Pendulum starts at $\theta=\pi$ and $\dot{\theta}=0$ and controller tries to swing it up $\theta=0$

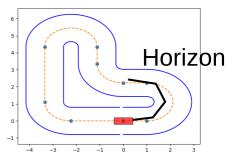




iLQR Algorithm Example



Model Predictive Control

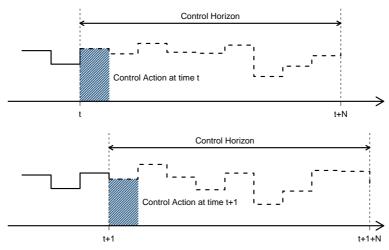


Model-predictive control/receding horizon control

Iteratively solve optimization problem on short time scale

- Long horizon equals great computation, uncertainty
- Solving problem on short horizon often sufficient

- ullet Solve control problem $oldsymbol{u}_0,\dots,oldsymbol{u}_{N-1}$ for a small number of steps N
- ullet Apply control $oldsymbol{u}_0$ from first step
- Repeat



Appendix: MPC can be understood as dynamical programming

DP applied in the starting state (optimal):

$$J^*(x_0) = \min_{u_0} \mathbb{E} \left[J_1^*(x_1) + g_0(x_0, u_0, w_0) \right]$$

d-step rollout of DP (**optimal**):

$$J^{*}(x_{0}) = \min_{\mu_{0},\dots,\mu_{d-1}} \mathbb{E}\left[J_{d}^{*}(x_{k+d}) + \sum_{k=0}^{d-1} g_{k}(x_{k}, \mu_{k}(x_{k}), w_{k})\right]$$

Deterministic simplification for control (optimal):

$$J^{*}(\boldsymbol{x}_{0}) = \min_{\boldsymbol{u}_{0},...,\boldsymbol{u}_{d-1}} \left[J_{d}^{*}\left(\boldsymbol{x}_{k+d}\right) + \sum_{k=0}^{d-1} c_{k}\left(\boldsymbol{x}_{k},\boldsymbol{u}_{k}\right) \right]$$

- MPC: Approximate $J_d^*(\boldsymbol{x}_{k+d})$ and just plan on d-horizon
- Re-plan at each step