

ning

Dynamical programming

- 1 The finite-horizon decision problem
- 2 Dynamical Programming
- 3 DP reformulations and introduction to Control

16 February

- 4 Discretization and PID control
- 6 Direct methods and control by optimization
- 6 Linear-quadratic problems in control
- Tinearization and iterative LQR

15 March Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 9 5 April, 2024

8 Exploration and Bandits

linear methods

approximations

Policy and value iteration

Monte-carlo methods and TD learning

Model-Free Control with tabular and

Eligibility traces and value-function

Q-learning and deep-Q learning

DTU

Reading material:

• [SB18, Chapter 3; 4]

Learning Objectives

- Markov decision process
- Value/action value function and other tools
- Dynamical programming for policy evaluation and control

3 DTU Compute Lecture 9 5 April, 2024

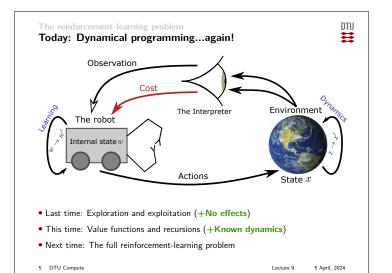
Housekeeping

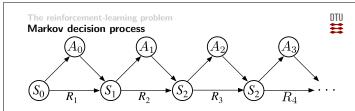
Housekeeping

DTU

- Feedback on project 2 in about 2 weeks
- Project 3 is online
- \bullet You are all enrolled in chattutor (email at s123456@student.dtu.dk)
- \bullet The homework problem next week is slightly longer than usual

4 DTU Compute Lecture 9 5 April, 2024





- ullet Agent/system interacts at times $t=0,1,2,\dots$
 - ullet Agent observes state $S_t \in \mathcal{S}$
 - ullet Agent takes action $A_t \in \mathcal{A}(S_t)$
 - ullet Agent obtains a reward $R_{t+1} \in \mathbb{R};$ time increments to t+1
- Dynamics described using conditional probabilities

$$\begin{split} p\left(s',r|s,a\right) &= \Pr\left\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\right\} \\ &= \Pr\left\{w \mid \text{s.t. } s' = f_t(s,a,w) \text{ and } r = -g_t(s,a,w)\right\} \end{split}$$

• If the environments stops we call it **episodic**

unf_gridworld.py

6 DTU Compute Lecture 9 5 April, 2024

Markov decision process (MDP)

Assumptions in a Markov Decision Process

- ullet $\mathcal{S},\mathcal{A}(s)$ are finite
- Markov property

$$\Pr\{S_{t+1}, R_{t+1} \mid S_t, A_t\} = \Pr\{S_{t+1}, R_{t+1} \mid S_0, A_0, \dots, S_t, A_t\}$$

• The transition probabilities are stationary (time-independent)

$$p(s_{t+1}, r_{t+1}|s_t, a_t) = p(s_{t'+1}, r_{t'+1}|s_{t'}, a_{t'})$$

7 DTU Compute

Lecture 9

5 April, 2024

The reinforcement-learning problem

Markov decision process (MDP)

Markov Decision Process - practically speaking

- ullet A function that says which actions are available in a given state $\mathcal{A}(s)$
- \bullet The transition probability $p(s^\prime,r|s,a)$
- ullet The initial state s_0
- A function which determines
 - ullet if a state is non-terminal, $s_t \in \mathcal{S}$
 - or terminal, $s_T \notin \mathcal{S}$
- ullet $\mathcal{S},\mathcal{A}(s)$ are finite

An episode is $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T, S_T$

8 DTU Compute Lecture 9 5 April, 2024

The reinforcement-learning problem

Policy

Policy

A policy is a distribution over actions

$$\pi(a|s) = \Pr\left\{ A_t = a \mid S_t = s \right\}$$

- Policy is time-independent
- \bullet Now a Distribution rather than function $a=\pi(s)$ because we want to explore

9 DTU Compute

ecture 9

April, 202

The reinforcement-learning problem

Return and discount

Return

For $0 \leq \gamma \leq 1$ and any t we define the accumulated $\gamma\text{-discounted}$ return

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• Equivalent to:

$$\lim_{N \to \infty} \left[\gamma^N g_N(x_N) + \sum_{k=0}^N \gamma^k g_k(s_k, a_k, w_k) \right]$$

- Fancy rationale for $\gamma < 1$:
 - Don't worry about the far and uncertain future
- Actual rationale for $\gamma < 1$:
 - \bullet Avoids infinities when $\gamma=1;$ simpler convergence theory
- \bullet tl;dr: Use $\gamma>0.9$ unless you have good reasons not to.

10 DTU Compute Lecture 9 5 April, 2024

DTU

Value and action-value function

The state-value function $v_\pi(s)$ is the expected return starting in s and assuming actions are selected using π :

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right], \quad A_t \sim \pi(\cdot | S_t)$$

The action-value function $q_\pi(s,a)$ is the expected return starting in s, taking action a, and then follow π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

Note that $J_{\pi}(s) = -v_{\pi}(s)$

11 DTU Compute Lecture 9 5 April, 2024

The reinforcement-learning problem

Where we want to end up

12 DTU Compute

Bellman equation	Learning algorithm	
Bellman expectation equation for v_π $v_\pi(s) = \mathbb{E}_\pi \left[R + \gamma v_\pi \left(S' \right) s \right]$	Iterative policy evaluation to learn v_π $V(s) \leftarrow \mathbb{E}_\pi \left[R + \gamma V\left(S' \right) s \right]$	r
Bellman expectation equation for q_π $q_\pi(s,a) = \mathbb{E}_\pi\left[R + \gamma q_\pi\left(S',A'\right) s,a\right]$	$\begin{aligned} & \textbf{Iterative policy evaluation to learn } q_{\pi} \\ & Q(s,a) \leftarrow \mathbb{E}_{\pi} \left[R + \gamma Q\left(S',A'\right) s,a \right] \end{aligned}$	$\sum_{r}^{s, a} a$

Policy iteration: Use policy evaluation to estimate v_π or q_π Improve by acting greedily: $\pi'(s) \leftarrow \arg\max_a q_\pi(s,a)$

Bellman optimality equation for v_{st}	Value iteration	2
$v_*(s) = \max_a \mathbb{E}\left[R + \gamma v_*(S') s, a\right]$	$V(s) \leftarrow \max_{a} \mathbb{E}\left[R + \gamma V(S') s, a\right]$	8
Bellman optimality equation for q_st	Q-value iteration	ζ,
$(s, a) = \mathbb{E}\left[R + \gamma \max_{a'} q_*(S', a') s, a\right]$	$Q(s,a) \!\leftarrow\! \mathbb{E}\left[R \!+\! \gamma \max_{a'} Q(S',a') s,a\right]$	max

Fundamental properties of value function

Fundamental properties of value/action-value functions

DTU

• Fundamental recursion

$$G_t = R_{t+1} + \gamma G_{t+1}$$

Action-value to value function

$$v_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[q_{\pi}(s, a) \right]$$
taken with probability $\pi(s)$

$$q_{\pi} = \frac{s}{q_{\pi}} v_{\pi}(s)$$

$$q_{\pi}(s, a)$$

• value-function to action-value

$$q_{\pi}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}\left(S_{t+1}\right) \middle| S_{t} = s, A_{t} = a\right] \tag{1}$$
 expected rewards
$$v_{t} = v_{t} \left[\sum_{s_{1} = s_{2}}^{s, a} q_{\pi}(s, a) + \sum_{s_{2} = s_{3}}^{s, a} v_{\pi}(s')\right]$$

13 DTU Compute

The reinforcement-learning problem $v_x(s_t) = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | s] = \mathbb{E}\left[R_{t+1} + \gamma \underbrace{\mathbb{E}[G_{t+1} | s_{t+1}]}_{[s_{t+1}]} | s\}\right]$

DTU

Two first two Bellman equations

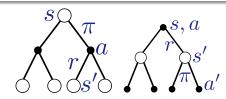
Bellman equations

ullet Recursive decomposition of value function. $V:\mathcal{S}\mapsto\mathbb{R}$ initialized randomly

$$v_{\pi}(s)V(s) = \leftarrow \mathbb{E}\left[R_{t+1} + \gamma v_{\pi} V\left(S_{t+1}\right) | S_t = s\right]$$

• Recursive decomposition of action-value function (Q initialized randomly)

$$q_{\pi}(s, a) = Q(s, a) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})Q(S_{t+1}, A_{t+1})|S_t = s, A_t = a\right]$$



mnf_pahisy_evalution_stepwise_gridworld.py

Task 1: Evaluate a policy

Iterative policy evaluation

ullet Given a policy π , initialize V randomly. For all s perform updates:

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p\left(s',r|s,a\right) \left[r + \gamma V\left(s'\right)\right]$$

until terminal condition is met. V(s) will converge to $v_\pi(s)$

• Initialize Q randomly. For all s,a perform updates:

$$Q(s,a) \leftarrow \sum_{s',r} p\left(s',r|s,a\right) \left[r + \gamma \sum_{a'} \pi(a'|s') Q\left(s',a'\right)\right]$$

until terminal condition is met. Q will converge to q_π

unf_policy_improvement_gridworld.py

15 DTU Compute

The reinforcement-learning problem

Quiz: Policy evaluation

The value function v_{π} for the policy $\pi(a|s) = \frac{1}{4}$ is is estimated using Policy Evaluation with $\gamma = 0.9$. What is the value function in the state indicated by Pacman in the next step?

- a. 3.41
- **b.** 3.39
- **c.** 3.31
- **d.** 3.28

The environment has a living reward of ${\cal R}=1$ and if it moves into the wall it stays in the current state.

e. Don't know.

16 DTU Compute

DTU

Optimal value function

The optimal state-value function v_{st} is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function q_* is the maximum action-value function over all policies

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

We define a partial ordering over policies as

$$\pi \geq \pi'$$
 if for all s : $v_{\pi}(s) \geq v_{\pi'}(s)$

Value/action value to policy

5 April, 2024

ullet Given any function $q:\mathcal{S} imes\mathcal{A}\mapsto\mathbb{R}$ we can define the **greedy policy** π' wrt. q

$$\pi'(s) = \arg \max q(s, a)$$

ullet Given any function $v:\mathcal{S}\mapsto\mathbb{R}$ we can define **greedy policy** π' wrt. v

$$\pi'(s) = \arg\max_{a} \mathbb{E}_{s',r} [r + \gamma v(s')|s, a]$$

18 DTU Compute

5 April, 2024

17 DTU Compute

5 April, 2024

Policy improvement theorem

Policy improvement theorem Let π and π' be any pair of deterministic policies such that for all $s \in \mathcal{S}$:

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \tag{2}$$

Then $\pi' \geq \pi$ meaning for all $s \in \mathcal{S}$

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

Inequality is strict if any inequality in eq. (2) is strict.

19 DTU Compute

Skipped: Proof of policy improvement theorem

$$\begin{split} v_{\pi}(s) &\leq q_{\pi}\left(s, \pi'(s)\right) \\ &= \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}\left(S_{t+1}\right) \middle| S_{t} = s, A_{t} = \pi'(s)\right] \\ &= \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma v_{\pi}\left(S_{t+1}\right) \middle| S_{t} = s\right] \\ &\leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1}, \pi'\left(S_{t+1}\right)\right) \middle| S_{t} = s\right] \\ &= \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma \mathbb{E}\left[R_{t+2} + \gamma v_{\pi}\left(S_{t+2}\right) \middle| S_{t+1}, A_{t+1} = \pi'\left(S_{t+1}\right)\right] \middle| S_{t} = s\right] \\ &= \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}\left(S_{t+2}\right) \middle| S_{t} = s\right] \\ &\leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}\left(S_{t+3}\right) \middle| S_{t} = s\right] \\ &\vdots \\ &\leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots \middle| S_{t} = s\right] \\ &= v_{\pi'}(s) \end{split}$$

20 DTU Compute

Idea

Given v_π , define new policy π' to be greedy with respect to $v_\pi.$ Then:

$$\begin{split} v_\pi(s) &= \mathbb{E}_{a \sim \pi(s)} \left[q_\pi(s,a) \right] \\ &\leq \max_a q_\pi(s,a), \quad \text{True by simple properties of expectations} \\ &= q_\pi(s,a^*), \quad a^* = \arg\max_a q_\pi(s,a) \\ &= q_\pi(s,\pi'(s)), \quad \pi' \text{ greedy policy wrt. } v_\pi \end{split}$$

Observations:

 \bullet Being greedy wrt. π means $\pi' \geq \pi$ by the policy-improvement theorem

21 DTU Compute

5 April, 2024

DTU

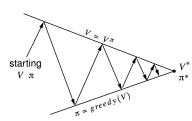
Quiz: Optimal action-value function (Exam spring 2023)

Let $v_*,\ q_*$ be the optimal value and action-value functions of an MDP, let π be any policy and finally let v_π and q_π be the value/action-value function associated with π . Which one of the following statements are true in general?

- a. $\max_s q_*(s, a) = v_*(a)$
- **b.** There is a policy π , a state s and an action a so that $q_*(s,a) < q_\pi(s,a)$
- **c.** For all π and a it is true that $q_*(s,a) > q_{\pi}(s,a)$
- **d.** There is a policy π and state s so that $\max_a q_*(s,a) = v_\pi(s)$
- e. Don't know.

22 DTU Compute 5 April, 2024

Policy iteration

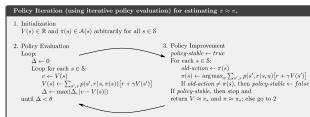


- \bullet Given initial policy π
- \bullet Compute v_π using policy evaluation
- \bullet Let π' be greedy policy vrt. v_π
- Repeat until $v_{\pi} = v_{\pi'}$

lecture_09_policy_improvement.py

23 DTU Compute 5 April, 2024

Policy iteration algorithm



- ullet In each step, the PI theorem guarantees that $\pi \leq \pi'$
- There is a limited number of policies so improvement cannot continue
- \bullet If $\pi=\pi',$ then the policy is in fact optimal
 - (it satisfy the Bellman optimality equation as we will see in a moment)

24 DTU Compute 5 April, 2024

DTU

Bellmans optimality equations

Suppose π_* is the policy corresponding to the optimal value function $v_*(s)$

$$\begin{aligned} v_*(s) &= \max_a q_{\pi_*}(s, a) \\ &= \max_a \mathbb{E}\left[R + v_{\pi_*}(S') | s, a\right] \end{aligned}$$

Bellmans optimality equations

ullet Recursion of optimal value function $v_*\colon$ Given any V

$$v_*(s) = V(s) \leftarrow \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1})V(S_{t+1})|S_t = s, A_t = a\right]$$
 (3)

• Recursion of optimal action-value function q_* :

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a\right]$$
(4)

 \bullet Theorem: v_* (or $q_*)$ satisfies the above recursions if (and only if) they corresponds to the optimal value function

25 DTU Compute

Lecture 9

5 April, 2024

Value Iteration

Value recrueion

- Recursion of optimal value function v_* : Given any V $v_*(s) = V(s) \leftarrow \max \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1})V(S_{t+1})|S_t = s, A_t = a\right] \tag{5}$
- ullet Recursion of optimal action-value function $q_*\colon$ Given any Q

$$q_*(s,a) = Q(s,a) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, A'_{t+1})Q(S_{t+1}, A_{t+1})|S_t = s, A_t = a\right]$$
(6)

• Theorem: VI converge to optimal v_* (or q_*)

TEU fare_09_vi_v.py

Lecture 9

5 April, 20

DTU

Dimitri P Bertsekas and Huizhen Yu.

Distributed asynchronous policy iteration in dynamic programming. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1368–1375. IEEE, 2010.

Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).

27 DTU Compute

ture 9 5 April, 2

Annendi

Note from lecture 3: Stationary problem = stationary policy

DTU

$$J_k(x_k) = \min_{u_k} \mathbb{E} \left[J_{k+1} \left(f_k(x_k, u_k, w_k) \right) + g_k \left(x_k, u_k, w_k \right) \right]$$

Assume the problem is independent of k:

$$J_k(x) = \min_{u} \mathbb{E}\left[J_{k+1}\left(f(x, u, w)\right) + g\left(x, u, w\right)\right]$$

- ullet It will be true that $J_0 pprox J_1 pprox J_2$ etc.
- ullet Policies will be the same initially $\pi_0 pprox \pi_1$ etc.

In fact just iterate to convergence:

$$J(x) \leftarrow \min_{u} \mathbb{E}\left[J\left(f(x, u, w)\right) + g\left(x, u, w\right)\right]$$

This is in fact value iteration

28 DTU Compute Lecture 9 5 April, 2024

Appendix

Note from lecture 3: Action-value formulation

5 April, 2024

$$J_k(x_k) = \min_{u_k} \mathbb{E}[J_{k+1}(f_k(x_k, u_k, w_k)) + g_k(x_k, u_k, w_k)]$$

We want to remove the green part

$$J_k(x_k) = \min_{u_k} Q(x_k, u_k)$$

$$Q(x_k, u_k) = \mathbb{E}[\underbrace{J_{k+1}(f_k(x_k, u_k, w_k))}_{=\min_{v_k} Q(x_{k+1}, u_{k+1})} + g_k(x_k, u_k, w_k)]$$

Substituting, the entire equation becomes red:

$$Q(x_k, u_k) = \mathbb{E}\left[\min_{u_{k+1}} Q\left(f_k(x_k, u_k, w_k), u_{k+1}\right) + g_k\left(x_k, u_k, w_k\right)\right]$$

• Simply VI for Q-functions!

29 DTU Compute

Appendix

Asynchronous updates

- In synchronous updates, we do
 - ullet For each $s\in\mathcal{S}$ compute:

$$v_{\pi}'(s) \leftarrow \mathbb{E}_{\pi}[R + \gamma v_{\pi}(S')|s]$$

- When done, set $v_\pi \leftarrow v_\pi'$
- In asynchronous updates, we re-use the updated values within one sweep
 - ullet For each $s\in\mathcal{S}$ compute:

$$v_{\pi}(s) \leftarrow \mathbb{E}_{\pi}[R + \gamma v_{\pi}(S')|s]$$

Both converge: You implement the asynchronous version, but most analysis is done in the synchronous version. It is also possible to structure sweeps for efficiency (see [BY10])

30 DTU Compute

Lecture 9

5 April, 2024

Convergence results

We will focus on the value function as the action-value results are very similar. First we define the operators $\mathcal T$ and $\mathcal T_\pi$:

$$(\mathcal{T}_{\pi}v)(s) = \mathbb{E}_{\pi} \left[R + \gamma v(S')|s \right] \tag{7}$$

$$(\mathcal{T}v)(s) = \max_{a} \mathbb{E}\left[R + \gamma v(S')|s, a\right] \tag{8}$$

If the state space is discrete $\mathcal{S} = \{s_1, \dots, s_N\}$ we can define the vector

$$v_i = v(s_i)$$

then the operators act on these vectors $\mathcal{T}:\mathbb{R}^N\to\mathbb{R}^N$

Fixed-point theorem

Let $T:A\mapsto A$ be a function and $A\subset\mathbb{R}^n$ a compact subset of \mathbb{R}^n . Then if for all ${m x},{m z}\in A$

$$||T(x) - T(z)|| \le \gamma ||x - z||, \quad 0 \le \gamma < 1$$

then repeatedly applying T to any $oldsymbol{x}$ will converge to a single, unique fixed point $\boldsymbol{x}^* = T(\boldsymbol{x}^*)$

31 DTU Compute 5 April, 2024

Asynchronous updates

• In synchronous updates, we iterate for all $s \in \mathcal{S}$:

$$v_{\pi}'(s) \leftarrow \mathbb{E}_{\pi}[R + \gamma v_{\pi}(S')|s]$$

then $v_{\pi} \leftarrow v'_{\pi}$

• In synchronous updates, we re-use the updated values within one sweep

$$v_{\pi}(s) \leftarrow \mathbb{E}_{\pi}[R + \gamma v_{\pi}(S')|s]$$

Both converge. It is also possible to structure sweeps for efficiency (see [BY10])

32 DTU Compute

Existence of solutions to Bellmans equations

ullet Both the operators ${\mathcal T}$ and ${\mathcal T}_\pi$ are contractions in the max-norm $\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|$. Example:

$$\|\mathcal{T}_{\pi}\boldsymbol{v} - \mathcal{T}_{\pi}\boldsymbol{w}\|_{\infty} = \max_{i} |\mathbb{E}_{\pi}\left[R + \gamma v(S')|s_{i}\right] - \mathbb{E}_{\pi}\left[R + \gamma w(S')|s_{i}\right]| \tag{9}$$

$$= \max_{i} \left| \sum_{s'} p(s'|s_i, a) \left(\gamma v(s') - \gamma w(s') \right) \right|$$

$$\leq \gamma \max_{i} \sum_{s'} p(s'|s_i, a) \left| v(s') - w(s') \right|$$
(11)

$$\leq \gamma \max \sum p(s'|s_i, a) |v(s') - w(s')| \tag{11}$$

$$\leq \gamma \max_{i} \sum_{s}^{s} p(s'|s_{i}, a) \|\boldsymbol{v} - \boldsymbol{w}\|_{\infty} = \gamma \|\boldsymbol{v} - \boldsymbol{w}\|_{\infty}$$
 (12)

- Consequence: Repeatedly applying Bellmans operators will lead to a single, fixed point policy $\mathcal{T}oldsymbol{v}_* = oldsymbol{v}_*$ and $\mathcal{T}_\pioldsymbol{v}_\pi = oldsymbol{v}_\pi$
- ullet Therefore, PE/PI converge to $v_\pi.$ VI also converges, but does it converge to the maximum?

33 DTU Compute

VI and maximum

DTU

• We know: Value iteration converge to a unique fixed point

$$v_* = (TT \cdots T)(v)$$

• Maximum value function is defined as

$$\tilde{v}(s) = \max_{\pi} v_{\pi}(s)$$

ullet It could be the case that $ilde{v}(s)=v_\pi(s)$, $ilde{v}(s')=v_{\pi'}(s')$, and neither was equal to $v_*(s), v_*(s')$

34 DTU Compute 5 April, 2024

Value iteration solution corresponds to a policy

Show that $v_*(s) \leq \tilde{v}(s)$

- ullet Value iteration gives us v_* as a fixed point
- ullet From v_* we can construct the action-values

$$q_*(s, a) = \mathbb{E}[R + \gamma v_*(S')|s, a]$$

ullet From these we can define the greedy policy π_*

$$\pi_*(s) = \arg \max q_*(s, a)$$

- By definition now $v_*(s) = (Tv_*)(s) = (\mathcal{T}_{\pi^*}v)(s)$
- Therefore v_* is the value function of the policy π_* , and so $v_*(s) \leq \tilde{v}(s)$ for all s

Value iteration is optimal

Show that $v_*(s) \geq \tilde{v}(s)$

- Assume $v_*(s) < \tilde{v}_\pi(s)$ for a specific s, π
- ullet Let π_1 be the greedy policy according to $ilde{v}_\pi.$ We know that

$$\tilde{v}_{\pi} \leq v_{\pi_1}$$

by the policy improvement theorem

- Therefore, $v_*(s) < \tilde{v}_\pi(s) \le v_{\pi_1}(s)$
- \bullet Repeat again to obtain π_2 and notice we are doing policy iteration
- ullet Since we are doing policy iteration eventually $\pi_k o \pi_\infty$
- ullet It must be the case v_{π_∞} is a fixed-point of ${\mathcal T}$, otherwise by the policy improvement theorem we could select a better (greedy) policy
- ullet Since the fixed point is unique, $v_{\pi_\infty}=v_*$, which is a contradiction

36 DTU Compute 5 April, 2024

35 DTU Compute