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Abstract. This paper is an introductory tutorial for numerical trajectory optimization with a focus
on direct collocation methods. These methods are relatively simple to understand and
effectively solve a wide variety of trajectory optimization problems. Throughout the paper
we illustrate each new set of concepts by working through a sequence of four example
problems. We start by using trapezoidal collocation to solve a simple one-dimensional
toy problem and work up to using Hermite–Simpson collocation to compute the optimal
gait for a bipedal walking robot. Along the way, we cover basic debugging strategies and
guidelines for posing well-behaved optimization problems. The paper concludes with a
short overview of other methods for trajectory optimization. We also provide an electronic
supplement that contains well-documented MATLAB code for all examples and methods
presented. Our primary goal is to provide the reader with the resources necessary to
understand and successfully implement their own direct collocation methods.
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1. Introduction. What is trajectory optimization? Let’s start with an example:
imagine a satellite moving between two planets. We would use the term trajectory to
describe the path the satellite takes between the two planets. Usually, this path would
include both state (e.g., position and velocity) and control (e.g., thrust) as functions
of time. The term trajectory optimization refers to a set of methods that are used
to find the best choice of trajectory, typically by selecting the inputs to the system,
known as controls, as functions of time.
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852 MATTHEW KELLY

1.1. Overview. Why read this paper? Our contribution is to provide a tutorial
that covers all of the basics required to understand and implement direct collocation
methods, while still being accessible to a broad audience. Where possible, we teach
through examples, both in this paper and in the electronic supplement.

This tutorial starts with a brief introduction to the basics of trajectory optimiza-
tion (section 1), and then it moves on to solve a simple example problem using trape-
zoidal collocation (section 2). The next sections cover the general implementation
details for trapezoidal collocation (section 3) and Hermite–Simpson collocation (sec-
tion 4), followed by a section about practical implementation details and debugging
(section 5). Next there are three example problems: cart-pole swing-up (section 6),
five-link bipedal walking (section 7), and minimum-work block-move (section 8). The
paper concludes with an overview of related optimization topics and a summary of
commonly used software packages (section 9).

This paper comes with a two-part electronic supplement, which is described in
detail in Appendix A. The first part is a general purpose trajectory optimization li-
brary, written in MATLAB, that implements trapezoidal direct collocation, Hermite–
Simpson direct collocation, direct multiple shooting (fourth-order Runge–Kutta), and
global orthogonal collocation (Chebyshev Lobatto). The second part of the supple-
ment is the full set of example problems from this paper implemented in MATLAB
and solved using the aforementioned trajectory optimization library. The code in the
supplement is well documented and designed to be read in a tutorial fashion.

1.2. Notation. For reference, the main symbols we will use throughout the tu-
torial and which are described in detail later are as follows:

tk time at knot point k

N number of trajectory (spline) segments

hk = tk+1 − tk duration of spline segment k

xk = x(tk) state at knot point k

uk = u(tk) control at knot point k

wk = w
(
tk,xk,uk

)
integrand of objective function at knot point k

fk = f
(
tk,xk,uk

)
system dynamics at knot point k

q̇ = d
dtq, q̈ = d2

dt2 q first and second time-derivatives of q

In some cases we will use the subscript k + 1
2 to indicate the midpoint of spline

segment k. For example, uk gives the control at the beginning of segment k, and
uk+ 1

2
gives the control at the midpoint of segment k.

1.3. A Simple Example. We will start by looking at a simple example: how
to move a small block between two points, starting and finishing at rest, in a fixed
amount of time. First, we will need to write down the dynamics, which describe how
the system moves. In this case, we will model the block as a point-mass that travels
in one dimension, and the control (input) to the system is simply the force applied to
the block. We use x for position, ν for velocity, and u for control (force):

ẋ = ν, ν̇ = u, system dynamics.

We would like the block to move one unit of distance in one unit of time, and it should
be stationary at both start and finish. These requirements are illustrated in Figure 1
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 853

Start
force

Finish

no friction
time = 0
position = 0
velocity = 0

time = 1
position = 1
velocity = 0

Fig. 1 Illustration of the boundary conditions for the simple block-move example.

po
sit

io
n

time 10
0

1

po
sit

io
n

time 10
0

1

a few feasible
 trajectories

the optimal
trajectory minimizing the integral

of force-squared

Fig. 2 Comparison of feasible (left) and optimal (right) trajectories for the simple block-move ex-
ample.

and are known as boundary conditions:

x(0) = 0,
ν(0) = 0,

x(1) = 1,
ν(1) = 0,

boundary conditions.

A solution to a trajectory optimization problem is said to be feasible if it satisfies
all of the problem requirements, known as constraints. In general, there are many
types of constraints. For the simple block-moving problem we have only two types
of constraints: the system dynamics and the boundary conditions. Figure 2 shows
several feasible trajectories. The set of controls that produce feasible trajectories are
known as admissible controls.

Trajectory optimization is concerned with finding the best of the feasible trajec-
tories, also known as the optimal trajectory, which is shown in Figure 2. We use an
objective function to mathematically describe what we mean by the “best” trajectory.
Later in this tutorial we will solve this block-moving problem with two commonly
used objective functions: minimal force squared (section 2) and minimal absolute
work (section 8):

min
u(t), x(t), ν(t)

∫ 1

0

u2(τ) dτ, minimum force squared,

min
u(t), x(t), ν(t)

∫ 1

0

∣∣u(τ) ν(τ)∣∣ dτ, minimum absolute work.

1.4. The Trajectory Optimization Problem. There are many ways to formu-
late trajectory optimization problems [51, 5, 45]. Here we will restrict our focus
to single-phase continuous-time trajectory optimization problems: those where the
system dynamics are continuous throughout the entire trajectory. A more general
framework is described in [51] and briefly discussed in section 9.9.

In general, an objective function can include two terms: a boundary objective J(·)
and a path integral along the entire trajectory, with the integrand w(·). A problem
with both terms is said to be in Bolza form. A problem with only the integral term
is said to be in Lagrange form, and a problem with only a boundary term is said to
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854 MATTHEW KELLY

be in Mayer form [5]. The examples in this paper are all in Lagrange form:

(1.1) min
t0,tF ,x(t),u(t)

J
(
t0, tF ,x(t0),x(tF )

)︸ ︷︷ ︸
Mayer Term

+

∫ tF

t0

w
(
τ,x(τ),u(τ)

)
dτ︸ ︷︷ ︸

Lagrange Term

.

In optimization, we use the term decision variable to describe the variables that the
optimization solver is adjusting to minimize the objective function. Generally, the
decision variables are the initial and final time (t0, tF ), as well as the state and control
trajectories, x(t) and u(t), respectively.

The optimization is subject to a variety of limits and constraints, detailed in
(1.2)–(1.9). The first, and perhaps most important, of these constraints is the system
dynamics, which are typically nonlinear and describe how the system changes in time:

(1.2) ẋ(t) = f
(
t,x(t),u(t)

)
, system dynamics.

Next is the path constraint, which enforces restrictions along the trajectory. A path
constraint could be used, for example, to keep the foot of a walking robot above the
ground during a step:

(1.3) h
(
t,x(t),u(t)

) ≤ 0, path constraint.

Another important type of constraint is a nonlinear boundary constraint, which puts
restrictions on the initial and final states of the system. Such a constraint would be
used, for example, to ensure that the gait of a walking robot is periodic:

(1.4) g
(
t0, tF ,x(t0),x(tF )

) ≤ 0, boundary constraint.

Often there are constant limits on the state or control. For example, a robot armmight
have limits on the angle, angular rate, and torque that could be applied throughout
the entire trajectory:

xlow ≤ x(t) ≤ xupp, path bound on state,(1.5)

ulow ≤ u(t) ≤ uupp, path bound on control.(1.6)

Finally, it is often important to include specific limits on the initial and final time and
state. These might be used to ensure that the solution to a path planning problem
reaches the goal within some desired time window, or that it reaches some target
region in state space:

tlow ≤ t0 < tF ≤ tupp, bounds on initial and final time,(1.7)

x0,low ≤ x(t0) ≤ x0,upp, bound on initial state,(1.8)

xF,low ≤ x(tF ) ≤ xF,upp, bound on final state.(1.9)

1.5. Direct Collocation Method. Most methods for solving trajectory optimiza-
tion problems can be classified as either direct or indirect. In this tutorial we will focus
on direct methods, although we do provide a brief overview of indirect methods in
section 9.4. The key feature of a direct method is that it discretizes the trajectory
optimization problem itself, typically converting the original trajectory optimization
problem into a nonlinear program (see section 1.6). This conversion process is known
as transcription and it is why some people refer to direct collocation methods as direct
transcription methods.
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 855

In general, direct transcription methods are able to discretize a continuous tra-
jectory optimization problem by approximating all of the continuous functions in the
problem statement as polynomial splines. A spline is a function that is made up
of a sequence of polynomial segments. Polynomials are used because they have two
important properties: they can be represented by a small (finite) set of coefficients,
and it is easy to compute integrals and derivatives of polynomials in terms of these
coefficients.

Throughout this tutorial we will be studying two direct collocation methods in de-
tail: trapezoidal collocation (section 3) and Hermite–Simpson collocation (section 4).
We will also briefly cover a few other direct transcription techniques: direct single
shooting (section 9.5), direct multiple shooting (section 9.6), and orthogonal colloca-
tion (section 9.7).

1.6. Nonlinear Programming. Most direct collocation methods transcribe a
continuous-time trajectory optimization problem into a nonlinear program. A nonlin-
ear program is a special name given to a constrained parameter optimization problem
that has nonlinear terms in either its objective or its constraint function. A typical
formulation for a nonlinear program is as follows:

min
z

J(z) subject to(1.10)

f(z) = 0,

g(z) ≤ 0,

zlow ≤ z ≤ zupp.

In this tutorial we will not spend time examining the details of how to solve
a nonlinear program (see [35, 6, 11]), and instead we will focus on the practical
details of how to properly use a nonlinear programming solver, such as those listed in
section 9.12.

In some cases, a direct collocation method might produce either a linear or a
quadratic program instead of a nonlinear program. This happens when the constraints
(including system dynamics) are linear and the objective function is linear (linear
program) or quadratic (quadratic program). Both linear and quadratic programs are
much easier to solve than nonlinear programs, making them desirable for real-time
applications, especially in robotics.

2. Block-Move Example (Minimum-Force Objective). In this section we con-
tinue with the simple example presented in the introduction: computing the optimal
trajectory to move a block between two points.

2.1. Block-Move Example: Problem Statement. We will model the block as a
unit point mass that slides without friction in one dimension. The state of the block
is its position x and velocity ν, and the control is the force u applied to the block:

(2.1) ẋ = ν, ν̇ = u.

Next, we need to write the boundary constraints which describe the initial and final
states of the block. Here we constrain the block to move from x = 0 at time t = 0 to
x = 1 at time t = 1. Both the initial and final velocities are constrained to be zero:

x(0) = 0,
ν(0) = 0,

x(1) = 1,
ν(1) = 0.

(2.2)
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856 MATTHEW KELLY

A trajectory that satisfies the system dynamics and the boundary conditions is said
to be feasible, and the corresponding controls are said to be admissible. An optimal
trajectory is one that minimizes an objective function and is feasible. Here we will
use a common objective function: the integral of control effort squared. This cost
function is desirable because it tends to produce smooth solution trajectories that are
easily computed:

(2.3) min
u(t), x(t), ν(t)

∫ 1

0

u2(τ) dτ.

2.2. Block-Move Example: Analytic Solution. The solution to the simple block-
moving trajectory optimization problem (2.1)–(2.3) is given below, with a full deriva-
tion shown in Appendix B:

(2.4) u∗(t) = 6− 12t, x∗(t) = 3t2 − 2t3.

The analytic solution is found using principles from the calculus of variations. These
methods convert the original optimization problem into a system of differential equa-
tions, which (in this special case) happen to have an analytic solution. It is worth
noting that indirect methods for solving trajectory optimization work by using a sim-
ilar principle: they analytically construct the necessary and sufficient conditions for
optimality, and then solve them numerically. Indirect methods are briefly covered in
section 9.4.

2.3. Block-Move Example: Trapezoidal Collocation. Now let’s look at how
to compute the optimal block-moving trajectory using trapezoidal collocation. We
will need to convert the original continuous-time problem statement into a nonlinear
program. First, we need to discretize the trajectory, which gives us a finite set of
decision variables. This is done by representing the continuous position x(t) and
velocity v(t) by their values at specific points in time, known as collocation points:

t → t0 . . . tk . . . tN ,

x → x0 . . . xk . . . xN ,

ν → ν0 . . . νk . . . νN .

Next, we need to convert the continuous system dynamics into a set of constraints
that we can apply to the state and control at the collocation points. This is where
trapezoid quadrature (also known as the trapezoid rule) is used. The key idea is
that the change in state between two collocation points is equal to the integral of the
system dynamics. That integral is then approximated using trapezoidal quadrature,
as shown below, where hk ≡ (tk+1 − tk):

ẋ = ν,∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

ν dt,

xk+1 − xk ≈ 1
2 (hk)(νk+1 + νk).

Simplifying and then applying this to the velocity equation as well, we arrive at a
set of equations that allow us to approximate the dynamics between each pair of
collocation points. The constraints are known as collocation constraints, and these
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 857

equations are enforced on every segment, k = 0, . . . , (N − 1), of the trajectory:

xk+1 − xk = 1
2 (hk)

(
νk+1 + νk

)
,(2.5)

νk+1 − νk = 1
2 (hk)

(
uk+1 + uk

)
.(2.6)

The boundary conditions are straightforward to handle: we simply apply them to the
state at the initial and final collocation points:

(2.7)
x0 = 0,
ν0 = 0,

xN = 1,
νN = 0.

Finally, we approximate the objective function using trapezoid quadrature, converting
it into a summation over each segment, using the control error at the collocation
points:

(2.8) min
u(t)

∫ tN

t0

u2(τ) dτ ≈ min
u0..uN

N−1∑
k=0

1
2 (hk)

(
u2
k + u2

k+1

)
.

2.4. Initialization. Most nonlinear programming solvers require an initial guess.
For easy problems, such as this one, a huge range of initial guesses will yield correct
results from the nonlinear programming solver. However, for difficult problems a poor
initial guess can cause the solver to get “stuck” on a bad solution or fail to converge
entirely. Section 5.1 provides a detailed overview of methods for constructing an initial
guess.

For the block-moving example, we will simply assume that the position of the
block (x) transitions linearly between the initial and final positions. We then dif-
ferentiate this initial position trajectory to compute the velocity (ν) and force (u)
trajectories. Note that this choice of initial trajectory satisfies the system dynamics
and position boundary condition, but it violates the velocity boundary condition:

xinit(t) = t,(2.9)

νinit(t) = d
dtx

init(t) = 1,(2.10)

uinit(t) = d
dtν

init(t) = 0.(2.11)

Once we have an initial trajectory, we can evaluate it at each collocation point to
obtain values to pass to the nonlinear programming solver:

(2.12) xinit
k = tk, νinitk = 1, uinit

k = 0.

2.5. Block-Move Example: Nonlinear Program. We have used trapezoidal di-
rect collocation to transcribe the continuous-time trajectory optimization problem
into a nonlinear program (constrained parameter optimization problem) (2.5)–(2.8).
Now, we just need to solve it! Section 9.12 provides a brief overview of software
packages that solve this type of optimization problem.

In general, after performing direct transcription, a trajectory optimization prob-
lem is converted into a nonlinear programming problem. It turns out that, for this
simple example, we actually get a quadratic program. This is because the constraints
(2.5)–(2.7) are both linear, and the objective function (2.8) is quadratic. Solving a
quadratic program is usually much easier than solving a nonlinear program.
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858 MATTHEW KELLY

2.6. Block-Move Example: Interpolation. Let’s assume that you’ve solved the
nonlinear program: you have a set of positions xk, velocities, νk, and controls uk

that satisfy the dynamics and boundary constraints and that minimize the objective
function. All that remains is to construct a spline (piecewise polynomial function) that
interpolates the solution trajectory between the collocation points. For trapezoidal
collocation, it turns out that you use a linear spline for the control and a quadratic
spline for the state. Section 3.4 provides more detailed discussion and derivation of
these interpolation splines.

3. Trapezoidal Collocation Method. Now that we’ve seen how to apply trape-
zoidal collocation to a simple example, we’ll take a deeper look at using trapezoidal
collocation to solve a generic trajectory optimization problem.

Trapezoidal collocation works by converting a continuous-time trajectory opti-
mization problem into a nonlinear program. This is done by using trapezoidal quadra-
ture, also know as the trapezoid rule for integration, to convert each continuous aspect
of the problem into a discrete approximation. In this section we will go through how
this transformation is done for each aspect of a trajectory optimization problem.

3.1. Trapezoidal Collocation: Integrals. There are often integral expressions
in trajectory optimization. Usually they are found in the objective function, but
occasionally they are in the constraints as well. Our goal here is to approximate
the continuous integral

∫
w(·) dt as a summation

∑
ckwk. The key concept here is

that the summation only requires the value of the integrand w(tk) = wk at the
collocation points tk along the trajectory. This approximation is done by applying the
trapezoid rule for integration between each collocation point, which yields following
the equation, where hk = tk+1 − tk [6]:

(3.1)

∫ tF

t0

w
(
τ,x(τ),u(τ)

)
dτ ≈

N−1∑
k=0

1
2hk ·

(
wk + wk+1

)
.

3.2. Trapezoidal Collocation: System Dynamics. One of the key features of
a direct collocation method is that it represents the system dynamics as a set of
constraints, known as collocation constraints. For trapezoidal collocation, the collo-
cation constraints are constructed by writing the dynamics in integral form and then
approximating that integral using trapezoidal quadrature [6]:

ẋ = f ,∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

f dt,

xk+1 − xk ≈ 1
2 hk · (fk+1 + fk).

This approximation is then applied between every pair of collocation points:

(3.2) xk+1 − xk = 1
2 hk ·

(
fk+1 + fk

)
, k ∈ 0, . . . , (N − 1).

Note that xk is a decision variable in the nonlinear program, while fk = f(tk,xk,uk)
is the result of evaluating the system dynamics at each collocation point.

3.3. Trapezoidal Collocation: Constraints. In addition to the collocation con-
straints, which enforce the system dynamics, you might also have limits on the state
and control, path constraints, and boundary constraints. These constraints are all
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 859

knot point

match function 
value at knot points

linear spline
approximation

"true" functionsegment

Fig. 3 Function approximation using a linear spline.

handled by enforcing them at specific collocation points. For example, simple limits
on state and control are approximated as follows:

(3.3) x < 0 → xk < 0 ∀k,

(3.4) u < 0 → uk < 0 ∀k.

Path constraints are handled similarly:

(3.5) g(t,x,u) < 0 → g(tk,xk,uk) < 0 ∀k.

Boundary constraints are enforced at the first and last collocation points:

(3.6) h
(
t0,x(t0),u(t0)

)
< 0 → h

(
t0,x0,u0

)
< 0.

Finally, there are two notes of caution with regard to constraints. First, trajectory
optimization problems with path constraints tend to be much harder to solve than
those without. The details are beyond the scope of this paper, but are well covered
by Betts [6]. Second, in trapezoidal collocation the boundaries of the trajectory
are always collocation points. There are some methods, such as those presented in
section 9.7, for which the trajectory boundaries are not collocation points. For these
methods, special care must be taken when handling boundary constraints [3, 24].

3.4. Trapezoidal Collocation: Interpolation. Trapezoidal collocation works by
approximating the control trajectory and the system dynamics as piecewise linear
functions, also known as a linear splines, shown in Figure 3. When constructing a
spline, the term knot point is used to denote any point that joins two polynomial
segments. For trapezoidal collocation, the knot points of the spline are coincident
with the collocation points.

Let’s start by constructing the control trajectory, which is a simple linear spline.
We know both the time and the control at each knot point, so it is a simple matter
to derive the expression for u on the interval t ∈ [tk, tk+1]. To keep the mathematics
readable, let’s define τ = t− tk and hk = tk+1 − tk:

(3.7) u(t) ≈ uk +
τ

hk
(uk+1 − uk) .

The state trajectory is represented by a quadratic spline — a piecewise quadratic
function. This might seem confusing, but it follows directly from the collocation
equations (3.2). The trapezoidal collocation equations are exact when the system
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control:
linear spline

state:
quadratic spline

Fig. 4 Illustration of the linear and quadratic spline segments that are used to approximate the
control and state trajectories for trapezoidal collocation.

match function at
knot points and
mid-points

quadratic spline
approximation

"true" function

segmentknot point

mid-point

Fig. 5 Function approximation using a quadratic spline. Notice that this approximation is far more
accurate than the linear spline in Figure 3, for the same number of segments.

dynamics vary linearly between any two knot points, a fact that we use to approximate
the dynamics over a single segment t ∈ [tk, tk+1], as shown below:

(3.8) f(t) = ẋ(t) ≈ fk +
τ

hk
(fk+1 − fk) .

We are interested in x and not ẋ, so we integrate both sides of the equation to obtain
a quadratic expression for the state:

(3.9) x(t) =

∫
ẋ(t) dτ ≈ c+ fkτ +

τ2

2hk
(fk+1 − fk) .

We can solve for the constant of integration c by using the value of the state at the
boundary τ = 0 to obtain our final expression for the state:

(3.10) x(t) ≈ xk + fkτ +
τ2

2hk
(fk+1 − fk) .

Figure 4 shows how a linear control segment and quadratic state segment are con-
structed. The spline equations (3.7) and (3.10) are used specifically for trapezoidal
collocation, since there is a one-to-one correspondence between the collocation equa-
tions and the interpolating spline. In general, if the control is a spline of order n, then
the state is represented by a spline of order n+ 1 [6].

4. Hermite–Simpson Collocation Method. The Hermite–Simpson collocation
is similar to trapezoidal collocation, but it provides a solution that is higher-order
accurate. This is because trapezoidal collocation approximates the objective function
and system dynamics as piecewise linear functions, while Hermite–Simpson colloca-
tion approximates them as piecewise quadratic functions, as shown in Figure 5. An
additional benefit of the Hermite–Simpson collocation method is that the state tra-
jectory is a cubic Hermite spline, which has a continuous first derivative.
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 861

4.1. Hermite–Simpson Collocation: Integrals. Integral expressions are com-
mon in trajectory optimization problems, especially in the objective function. The
Hermite–Simpson collocation method approximates these integrals using Simpson
quadrature. Simpson quadrature, also known as Simpson’s rule for integration, works
by approximating the integrand of the integral as a piecewise quadratic function. This
approximation is given below and derived in Appendix C:

∫ tF

t0

w
(
τ
)
dτ ≈

N−1∑
k=0

hk

6

(
wk + 4wk+ 1

2
+ wk+1

)
.

4.2. Hermite–Simpson Collocation: System Dynamics. In any collocation
method the collocation constraints are the set of constraints that are constructed
to approximate the system dynamics. In the Hermite–Simpson collocation method
we construct these constraints by rewriting the system dynamics in integral form: the
change in state between any two knot points tk should be equal to the integral of the
system dynamics f(·) between those points:

ẋ = f ,(4.1) ∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

f dt.(4.2)

The transcription from continuous dynamics to a set of collocation equations occurs
when we approximate the continuous integral in (4.2) with Simpson quadrature and
apply it between every pair of knot points:

(4.3) xk+1 − xk = 1
6 hk(fk + 4fk+ 1

2
+ fk+1).

For Hermite–Simpson collocation we actually need a second collocation equation, in
addition to (4.3), to enforce the dynamics. This is because the dynamics at the
midpoint of the segment fk+ 1

2
are a function of the state xk+ 1

2
, which is not known

a priori. We can compute the state at the midpoint by constructing an interpolant
for the state trajectory (see section 4.4) and then evaluating it at the midpoint of the
interval:

(4.4) xk+ 1
2
=

1

2

(
xk + xk+1

)
+

hk

8

(
fk − fk+1

)
.

This second collocation equation (4.4) is special in that it can be computed explicitly
in terms of the state at the knot points. Thus, it is possible to combine both (4.4)
and (4.3) into a single complicated collocation constraint. When transcription of the
system dynamics is performed using this single collocation constraint, the resulting
formulation is said to be in compressed form. An alternative implementation is to
create an additional decision variable for the state at the midpoint xk+ 1

2
, and then

use both (4.3) and (4.4) as constraint equations. When the collocation equations are
formulated using this pair of constraints they are said to be in separated form.

There are a variety of trade-offs between the separated and compressed forms of
Hermite–Simpson collocation, which are covered in detail in [6]. The general rule is
that the separated form is better when working with a smaller number of segments,
while the compressed form is better when the number of segments is large. Both
constraint equations (4.3) and (4.4) can be found in Betts’s book [6].
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862 MATTHEW KELLY

4.3. Hermite–Simpson Collocation: Constraints. In addition to the colloca-
tion constraints, which enforce the system dynamics, you might also have limits on
the state and control, path constraints, and boundary constraints. These constraints
are all handled by enforcing them at specific collocation points. For example, simple
limits on state and control are approximated as follows:

(4.5) x < 0 → xk < 0,
xk+ 1

2
< 0,

(4.6) u < 0 → uk < 0,
uk+ 1

2
< 0.

Path constraints are handled similarly: they are applied at all collocation points, as
shown below:

(4.7) g(t,x,u) < 0 → g(tk,xk,uk) < 0,
g(tk+ 1

2
,xk+ 1

2
,uk+ 1

2
) < 0.

Boundary constraints are enforced at the first and last knot points:

(4.8) h
(
t0,x(t0),u(t0)

)
< 0 → h

(
t0,x0,u0

)
< 0.

Just like in trapezoidal collocation, trajectory optimization problems with path con-
straints tend to be much harder to solve than those without [6]. Additionally, in
Hermite–Simpson collocation the boundaries of the trajectory are always collocation
points. There are some methods, such as those presented in section 9.7, for which
the trajectory boundaries are not collocation points. For these methods, special care
must be taken when handling boundary constraints. [3, 24].

4.4. Hermite–Simpson Collocation: Interpolation. After we’ve solved the non-
linear program, we know the value of the state and control trajectories at each col-
location point. The next step is to construct a continuous trajectory to interpolate
the solution between the collocation points. Just like with trapezoidal collocation, we
will use a polynomial interpolant that is derived from the collocation equations.

Hermite–Simpson collocation works by using Simpson quadrature to approximate
each segment of the trajectory. As shown in Appendix C, Simpson quadrature uses
a quadratic segment, fitted through three uniformly spaced points, to approximate
the integrand. In this case, we are approximating both the control and the system
dynamics as quadratic over each segment of the trajectory.

The general equation for quadratic interpolation is given in Numerical Recipes
in C [50] and reproduced below for a curve u(t) that passes through three points,
(tA,uA), (tB,uB), and (tC ,uC):
(4.9)

u(t) =
(t− tB)(t− tC)

(tA − tB)(tA − tC)
uA +

(t− tA)(t− tC)

(tB − tA)(tB − tC)
uB +

(t− tA)(t− tB)

(tC − tA)(tC − tB)
uC .

For our specific case, we can simplify this equation quite a bit, since our points are
uniformly spaced. Let’s start by using points k, k+ 1

2 , and k+1 in place of A, B, and
C. Next, recall from previous sections that hk = tk+1 − tk, tk+ 1

2
= 1

2 (tk + tk+1), and
τ = t − tk. After making these substitutions and doing some algebra, we can arrive
at the following simplified equation for interpolating the control trajectory:

u(t) =
2

h2
k

(
τ − hk

2

)(
τ − hk

)
uk − 4

h2
k

(
τ
)(
τ − hk

)
uk+ 1

2
+

2

h2
k

(
τ
)(
τ − hk

2

)
uk+1.

(4.10)
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control:
quadratic spline

state:
cubic spline

Fig. 6 Illustration of the quadratic and cubic spline segments that are used to approximate the
control and state trajectories for Hermite–Simpson collocation.

Hermite–Simpson collocation also represents the system dynamics f(·) = ẋ using
quadratic polynomials over each segment. As a result, the quadratic interpolation
formula that we have developed for the control trajectory can also be applied to the
system dynamics:

(4.11) f(t) = ẋ =
2

h2
k

(
τ−hk

2

)(
τ−hk

)
fk − 4

h2
k

(
τ
)(
τ−hk

)
fk+ 1

2
+

2

h2
k

(
τ
)(
τ−hk

2

)
fk+1.

Usually we are interested in obtaining an expression for the state trajectory x(t) rather
than its derivative ẋ(t). To find the state trajectory, we simply integrate (4.11), after
rearranging it into standard polynomial form:

x(t) =

∫
ẋ dt

(4.12)

=

∫ [
fk +

(
− 3fk + 4fk+ 1

2
− fk+1

)(
τ

hk

)
+

(
2fk − 4fk+ 1

2
+ 2fk+1

)(
τ

hk

)2
]
dt.

We can compute the integral using basic calculus and then solve for the constant of
integration using the boundary condition x(tk) = xk. The resulting expression is
given below, which allows us to interpolate the state trajectory:

x(t) = xk + fk

(
τ

hk

)
+

1

2

(
− 3fk + 4fk+ 1

2
− fk+1

)(
τ

hk

)2

(4.13)

+
1

3

(
2fk − 4fk+ 1

2
+ 2fk+1

)(
τ

hk

)3

.

The interpolants for the state and control trajectories are illustrated in Figure 6.

5. Practical Considerations. This section of the paper provides an overview of
several important topics that are related to trajectory optimization in general, rather
than to some specific method. We start with some practical suggestions about how to
initialize trajectory optimization problems, followed by two sections that explain how
to check the accuracy of a given solution. We conclude by looking at some common
bugs that show up in trajectory optimization code and how to go about fixing them.

5.1. Initialization. Nearly all trajectory optimization techniques require a good
initial guess to begin the optimization. In the best case, a good initialization will
ensure that the solver rapidly arrives at the globally optimal solution. In the worst
case, a bad initialization can cause the nonlinear programming solver to fail to solve
an otherwise correct optimization problem.
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864 MATTHEW KELLY

To understand these concepts, let’s use an analogy: imagine that the optimization
is trying to get to the top of a hill. If the landscape is simple, with only one hill,
then it doesn’t matter where the optimization starts: it can go uphill until it finds
the solution. What happens if there are two different hills and one is higher? Then
there will be some starting points where going uphill will only get you to the lower
of the two hills. In this case, the optimization will know that it got to the top of the
hill, but it won’t know that there is an even higher hill somewhere else.

Just like in the simple hill-climbing analogy, the choice of initial guess can af-
fect which local minimum the optimization eventually converges to. The presence of
constraints makes it even worse: there might be some starting points from which the
optimization cannot even find a feasible solution. This is a fundamental problem with
nonlinear programming solvers: they cannot always find a solution, and if they do
find a solution, it is only guaranteed to be locally optimal.

The best initializations for trajectory optimization usually require some problem-
specific knowledge, but there are a few general approaches that can be useful. In
this way, initialization is more of an art than a science. One good practice is to try
several different initialization strategies and check that they all converge to the same
solution. See section 5.4 for some debugging suggestions to help determine whether a
solution is converging correctly.

One of the simplest initialization techniques is to assume that the trajectory is
a straight line in state space between the initial and final states. This approach is
easy to implement, and will often work well, especially for simple boundary value
problems.

If you have a rough idea of what the behavior should look like, then you can
put that in as the initial guess. For example, if you want a robot to do a back-flip,
sketch out the robot at a few points throughout the back-flip, figure out the points
in state space for each configuration, and then use linear interpolation between those
points.

For complicated problems, a more principled approach might be required. Our
favorite technique is to simplify the trajectory optimization problem until we can find
a reasonable solution using a simple initialization technique. Then we use the solution
of the simplified problem to initialize the original problem. If this doesn’t work, then
we simply construct a series of trajectory optimization problems, each of which is
slightly closer to the desired problem and uses the previous solution as the initial
guess.

For example, let’s say that you want to find a minimum-work trajectory for a
walking robot. This objective function is challenging to optimize (see section 8),
and there are some difficult nonlinear constraints: foot clearance, contact forces, and
walking speed. Start by replacing the objective function with something simple: a
minimum torque-squared objective (like the five-link biped example; see section 7).
Next, remove most of the constraints and replace the nonlinear dynamics with simple
kinematics (joint acceleration = joint torque). Solve this problem, and then use the
solution to initialize a slightly harder version of the problem where you’ve added back
in some of the constraints. You can then repeat this process until you have a solution
to your original trajectory optimization problem. This process is also a good way to
find bugs in both your problem statement and the code.

5.2. Mesh Refinement. The direct transcription process approximates a trajec-
tory using polynomial splines, which allows the trajectory optimization problem to
be converted into a nonlinear program. The collocation constraints in the result-
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Fig. 7 Illustration of mesh refinement by subdividing segments. The number of subsegments is
determined by the peak error in each segment.

ing nonlinear program act as implicit Runge–Kutta integration schemes [6]. Just
like any integration scheme, there are numerical errors associated with the choices of
time step and method order. Using short time steps (dense mesh) and a high-order
method will result in an accurate approximation, but at a significant computational
cost.

Mesh refinement is the process by which a trajectory optimization problem is
solved on a sequence of different collocation meshes, also known as collocation grids.
The mesh (grid) refers to the choice of discretization along the trajectory. Generally,
the first mesh is coarse, with a small number of collocation points and (or) a lower-
order collocation method. Subsequent meshes have more points and (or) higher-
order collocation methods. This iterative strategy is implemented to obtain the most
accurate solution with the least amount of computational effort: the solutions using
the initial meshes are easy to solve but inaccurate, while the solutions on subsequent
meshes are more costly to compute but more accurate.

Figure 7 shows a simple example of how the mesh for a linear spline might be
refined to produce a more accurate representation by adding a small number of points.
The segments with a small error are left unchanged, while segments with more error
are subdivided into 2, 3, or 4 subsegments for the next iteration.

In more sophisticated mesh-refinement methods, the accuracy of a given segment
might be improved by subdividing it or by increasing the polynomial order inside the
segment. Such algorithms are referred to as hp-adaptive meshing. The decision to
subdivide the mesh or to increase the polynomial order is made by examining the
error profile within a single segment. If there is a spike in the error, then the segment
is subdivided, otherwise the polynomial order is increased, for example, switching
from trapezoidal to Hermite–Simpson collocation [16], [45], and [6].

5.3. Error Analysis. There are two types of numerical errors that are present
in the solution of a trajectory optimization problem: transcription errors and errors
in the solution to the nonlinear program. Here we will focus on the accuracy of
the transcription process, quantifying the error that was introduced by the choice
of discretization (both method and grid). We can then use these error estimates to
compute a new discretization, as described in section 5.2.

There are many possible error metrics for trajectory optimization [6]. Here we will
construct an error estimate based on how well the candidate trajectory satisfies the
system dynamics between the collocation points. The logic here is that if the system
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866 MATTHEW KELLY

dynamics are accurately satisfied between the collocation points, then the polynomial
spline is an accurate representation of the system, which would then imply that the
nonlinear program is an accurate representation of the original trajectory optimization
problem.

We do not know the true solution x∗(t), u∗(t) of the trajectory optimization
problem, but we do know that it must precisely satisfy the system dynamics

ẋ∗(t) = f
(
t,x∗(t),u∗(t)

)
.

From this, we can construct an expression for the error in the solution to the system
dynamics along the candidate trajectory. It is important that the solution x(t), u(t)
is evaluated using method consistent interpolation [6]:

ε(t) = ẋ(t)− f
(
t,x(t),u(t)

)
.

This error ε(t) will be zero at each collocation point and nonzero elsewhere. We can
compute the integral of the error ε(t) numerically to determine how far the candidate
solution (polynomial spline) may have deviated from the true solution along each
dimension of the state. The following expression for the error is typically evaluated
using Rhomberg quadrature [6]:

ηk =

∫ tk+1

tk

|ε(τ)| dτ.

Once you compute the error in each state over each segment of the trajectory, you can
use it to determine how to remesh the trajectory (section 5.2) so that the optimization
converges to an optimal solution that satisfies the continuous dynamics. See [6] and
[16] for additional details about how to compute error estimates and perform mesh
refinement.

5.4. Debugging Your Code. There are many ways that trajectory optimization
can go wrong. In this section, we discuss some common bugs that find their way into
code and a few techniques for locating and fixing them. Betts [6] also provides a good
list of debugging suggestions.

One particularly tricky type of bug occurs when there is a family of optimal
solutions, rather than a single unique solution. This causes a failure to converge
because the optimization is searching for a locally optimal solution, which it never
finds because many solutions are equally good. The fix is to modify the problem
statement so that there is a unique solution. One simple way to do this is to add a
small regularization term to the cost function, such as the integral of control squared
along the trajectory. This puts a shallow bowl in the objective function, forcing a
unique solution. Trajectory optimization problems with nonunique solutions often
have singular arcs, which occur when the optimal control is not uniquely defined by
the objective function. A more formal treatment of singular arcs is provided in [5]
and [6].

A trajectory optimization problem with a nonsmooth solution (control) might
cause the nonlinear program to converge very slowly. This occurs in our final example:
finding the minimal work trajectory to move a block between two points (section 8).
There are three basic ways to deal with a discontinuous solution (control). The first
is to do mesh refinement (section 5.2) so that there are many short segments near the
discontinuity. The second is to slightly modify the problem, typically by introducing
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 867

a smoothing term, such that the solution is numerically stiff but not discontinuous.
This second approach was used in [55]. The third approach is to solve the problem
using a multiphase method (see section 9.9), such that the control in each phase of
the trajectory is continuous, and discontinuities occur between phases.

Another common cause of poor convergence in the nonlinear programming solver
occurs when the objective and (or) constraint functions have discontinuous gradients
(see section 5.5). There are many sources of inconsistency that find their way into tra-
jectory optimization problems: discontinuous functions (abs(), min(), max(). . .),
random number generators, variable step (adaptive) integration, iterative root find-
ing, and table interpolation. All of these will cause significant convergence problems
if placed inside a standard nonlinear programming solver. Section 5.5 covers some
methods for handling inconsistent functions.

If the nonlinear programming solver returns saying that the problem is infeasible,
there are two possible scenarios. The first is that your problem statement is actually
impossible: you have contradictory constraints. In this case, you can often find some
clues by looking at final point in the nonlinear programming solution (the best of the
infeasible trajectories). What constraints are active? Is the trajectory right on top
of your initial guess? Is it running into an actuator limit? You can also debug this
type of failure by removing constraints from the problem until it converges and then
adding them back one at a time.

The second cause of an infeasible report from a nonlinear programming solver is
when a complicated optimization problem is initialized with a poor guess. In this case,
the optimization gets stuck in a “bad” local minimum, that has no feasible solution.
The best fix in this case it to use the methods discussed in section 5.1 to compute a
better initialization.

It is challenging to determine if a candidate solution is at a global or a local
minimum. In both cases the nonlinear programming solver will report success. In
general, there is no rigorous way to determine if you have the globally optimal solution,
but there are many effective heuristics. One such heuristic is to run the optimization
from a wide variety of initial guesses. If most of the guesses converge to the same
solution, and it is better than all others found, there is a good chance that this is
the globally optimal solution. Another such heuristic is to use different transcription
methods and check that all methods all converge to the same solution.

5.5. Consistent Functions. Direct transcription solves a trajectory optimiza-
tion problem by converting it to a nonlinear program. Most nonlinear programming
solvers, such as SNOPT [25], IPOPT [10], and FMINCON [37], require that the user-
defined objective and constraint functions be consistent. A function is consistent if it
performs the exact same sequence of arithmetic operations on each call [6]. This is es-
sentially like saying that the function must have no logical branches, be deterministic,
and have outputs that vary smoothly with the inputs.

For example, the abs() function is not consistent, because of the discontinuity in
the derivative at the origin. The functions min() and max() are also not consistent.
Imagine a function with two widely spaced peaks. A small change in the shape
of the function could cause the maximum value to jump from one peak f(x1) to a
second peak f(x2). The problem here is in the gradients: when the peak moves, the
gradient ∂f

∂x1
jumps to zero, and the gradient ∂f

∂x2
jumps from zero to some nontrivial

value.
There is a neat trick that allows many inconsistent functions (such as abs(),

min(), and max()) to be implemented consistently by introducing extra decision
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868 MATTHEW KELLY

variables (known as slack variables) and constraints into the problem. An example
is given in section 8, showing how to correctly implement the abs() function. This
topic is also covered by Betts [6]. An alternative way to handle such functions is to
use smoothing, which is also demonstrated in the block-moving example in section 8.

Another place where inconsistency shows up is when a function has an internal
iteration loop, such as in root finding or in a variable-step integration method. The
correct way to implement a root-finding method inside an optimization is to use a
fixed number of iterations. Likewise, a variable-step integration method should be
replaced with a fixed-step method [6].

There are many situations where evaluating the dynamics or constraint functions
require a table look-up, for example, computing the lift force generated by an airfoil.
Linear interpolation of a table has a discontinuous derivative when switching between
two different table entries. The fix is to switch to an interpolation scheme that has
continuous derivatives. Continuous first derivatives are required by most solvers when
computing gradients (first partial derivatives). Solvers that compute both gradients
and Hessians (second partial derivatives) will require continuous second derivatives
[6].

One final source of inconsistency is the use of a time-stepping simulator such as
Bullet [14] or Box2d [12] to compute the system dynamics. The contact solvers in these
simulators are inconsistent, which then leads to poor convergence in the nonlinear
program. The best way to address this source of inconsistency is to rewrite the system
dynamics. If the sequence of contacts is known and the dynamics can be described
as a simple hybrid system, then you can use multiphase trajectory optimization to
compute the solution (see section 9.9). For more complex systems where the contact
sequence is unknown, you can use through-contact trajectory optimization to compute
the solution [40, 48] (see section 9.10). If you need to use the time-stepping simulator,
then you can use some of the methods developed by the computer graphics community
[60, 61, 1, 34].

6. Cart-Pole Swing-Up Example. The cart-pole system is commonly used as a
teaching tool in both introductory controls and trajectory optimization. The system
comprises a cart that travels along a horizontal track and a pendulum that hangs freely
from the cart. There is a motor that drives the cart forward and backward along the
track. It is possible to move the cart in such a way that the pendulum, initially
hanging below the cart at rest, is swung up to a point of inverted balance above the
cart. In this section, we will use direct collocation to compute the minimum-force
trajectory to perform this so-called “swing-up” maneuver.

6.1. Cart-Pole Example: System Dynamics. The cart-pole is a second-order
dynamical system and its equations of motion can be derived using methods found
in any undergraduate dynamics text book. The dynamics of this system are simple
enough to derive by hand, although for more complicated systems it is generally a
good idea to use a computer algebra package instead.

The position of the cart is given by q1, the angle of the pole is given by q2, and
the control force is given by u. The masses of the cart and pole are given by m1 and
m2, respectively, and the length of the pole and acceleration due to gravity are � and
g, as shown in Figure 8. The dynamics (q̈1 and q̈2) for the cart-pole system are

q̈1 =
�m2 sin(q2) q̇

2
2 + u+m2 g cos(q2) sin(q2)

m1 +m2

(
1− cos2(q2)

) ,(6.1)
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 869

Fig. 8 Physical model for the cart-pole example problem. The pendulum is free to rotate about its
support point on the cart.

(6.2) q̈2 = − �m2 cos(q2) sin(q2) q̇
2
2 + u cos(q2) + (m1 +m2) g sin(q2)

�m1 + �m2

(
1− cos2(q2)

) .

All standard trajectory optimization methods require that the dynamics of the
system be in first-order form. This is accomplished by including both the minimal
coordinates (q1 and q2) and their derivatives in the state. Note that q̈1 and q̈2 are
defined in (6.1) and (6.2):

x =

⎡
⎢⎢⎣
q1
q2
q̇1
q̇2

⎤
⎥⎥⎦ , ẋ = f

(
x, u
)
=

⎡
⎢⎢⎣
q̇1
q̇2
q̈1
q̈2

⎤
⎥⎥⎦ .

6.2. Cart-Pole Example: Objective Function. For this example we will use one
of the more common objective functions in trajectory optimization: the integral of
the actuator-effort (control) squared:

(6.3) J =

∫ T

0

u2(τ) dτ.

This objective function (6.3) tends to produce smooth trajectories, which are desirable
for two key reasons. The first is that most transcription methods assume that the
solution to the trajectory optimization problem is well approximated by a polynomial
spline. Thus, a problem with a solution that is smooth will be solved more quickly and
accurately than a problem with a nonsmooth solution. The second benefit of smooth
trajectories is that they tend to be easier to stabilize with conventional controllers
when implemented on a real system.

6.3. Cart-Pole Example: Boundary Constraints. Many trajectory optimiza-
tion problems include boundary constraints, which restrict the state of the system at
the boundaries of the trajectory. Here we will restrict the full state of the cart-pole
system at both the initial and final points on the trajectory. Let’s suppose that we
want the cart to start in the center of the rails and translate a distance d during its
swing-up maneuver. The (constant) boundary constraints for this situation are given

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

30
.2

25
.9

3.
13

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



870 MATTHEW KELLY

by

q1(t0) = 0, q1(tF ) = d,

q2(t0) = 0, q2(tF ) = π,

q̇1(t0) = 0, q̇1(tF ) = 0,

q̇2(t0) = 0, q̇2(tF ) = 0.

6.4. Cart-Pole Example: State and Control Bounds. The cart-pole swing-up
problem has a few simple constraints. First, let’s look at the state. The cart rides
on a track which has a finite length, so we need to include a simple constraint that
limits the horizontal range of the cart. Additionally, we will restrict the motor force
to some maximal force in each direction:

−dmax ≤ q1(t) ≤ dmax,

−umax ≤ u(t) ≤ umax.

6.5. Cart-Pole Example: Trapezoidal Collocation. We can collect all of the
equations in this section and combine them with the trapezoidal collocation method
from section 3, and write down the cart-pole swing-up problem as a nonlinear program:

minimize

J =

N−1∑
k=0

hk

2

(
u2
k + u2

k+1

)
, objective function,

(6.4)

with decision variables

x0, . . . ,xN u0, . . . , uN ,
(6.5)

subject to

1
2hk

(
fk+1 + fk

)
= xk+1 − xk, k ∈ 0, . . . , (N − 1), collocation constraints,

(6.6)

− dmax ≤ q1 ≤ dmax, path constraints,

(6.7)

− umax ≤ u ≤ umax, path constraints,

(6.8)

x0 = 0, xN = [d, π, 0, 0]T , boundary constraints.

(6.9)

Note that hk = tk+1 − tk. Here, we will use a uniform grid, so tk = k T
N , where N

is the number of segments used in the transcription. In general, you could solve this
problem on an arbitrary grid; in other words, each hk could be different.

6.6. Cart-Pole Example: Hermite–Simpson Collocation. We can also use
Hermite–Simpson collocation (section 4) to construct a nonlinear program for the
cart-pole swing-up problem. This is similar to the trapezoidal collocation, but it
uses a quadratic (rather than linear) spline to approximate the dynamics and control.
Here we will use the separated form of the Hermite–Simpson method, which requires
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 871

including collocation points for the state and control at the midpoint of each segment
tk+ 1

2
(see section 4.2):

minimize

J =

N−1∑
k=0

hk

6

(
u2
k + 4u2

k+ 1
2
+ u2

k+1

)
, objective function,

(6.10)

with decision variables

x0, x0+ 1
2
, . . . ,xN , u0, u0+ 1

2
, . . . , uN ,

subject to

xk+ 1
2
= 1

2

(
xk + xk+1

)
+ hk

8

(
fk − fk+1

)
, k ∈ 0, . . . , (N − 1),

interpolation

constraints,

(6.11)

hk

6

(
fk + 4fk+ 1

2
+ fk+1

)
= xk+1 − xk, k ∈ 0, . . . , (N − 1),

collocation

constraints,

(6.12)

− dmax ≤ q1 ≤ dmax, path constraints,

(6.13)

− umax ≤ u ≤ umax, path constraints,

(6.14)

x0 = 0, xN = [d, π, 0, 0]T ,
boundary

constraints.

(6.15)

6.7. Cart-Pole Example: Initialization. The cart-pole swing-up problem is a
boundary value problem: we are given the initial and final states, and our task is to
compute an optimal trajectory between those two points. An obvious (and simple)
initial guess is that the system moves linearly between the initial and final states with
zero control effort. This simple guess works well for this problem, despite its failure
satisfy the system dynamics:

(6.16) xguess(t) =
t

T

⎡
⎢⎢⎣
d
π
0
0

⎤
⎥⎥⎦ , uguess(t) = 0.

Additionally, we will start with a uniform grid, such that tk = k T
N . The ini-

tial guess for each decision variable in the nonlinear program is then computed by
evaluating (6.16) at each knot point tk (and the midpoint tk+ 1

2
for Hermite–Simpson

collocation).

6.8. Cart-Pole Example: Results. Here we show the optimal swing-up trajec-
tory for the cart-pole system, computed using Hermite–Simpson collocation with 25
trajectory segments. The set of parameters that we use is given in Appendix E.1.
We computed the solution in MATLAB, on a regular desktop computer,1 using the

1Processor: 3.4GHz quad-core Intel i5-3570K.
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872 MATTHEW KELLY

start

end

Fig. 9 Illustration of the optimal trajectory for the cart-pole swing-up example. The frames are uni-
formly spaced in time, moving from blue (dark) to yellow (light) as the trajectory progresses.
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Fig. 10 Plots showing the optimal trajectory for the cart-pole swing-up example.

code provided in the electronic supplement (see Appendix A). The nonlinear program
was solved by FMINCON in 5.91 seconds (71 iterations) using default convergence
settings.

Figure 9 shows a stop-action animation of the swing-up maneuver, with uniformly
spaced frames. The same solution is shown in Figure 10 as plots of state and control
versus time. Finally, Figure 11 shows the error estimates along the trajectory.

Notice that the error metrics in both the differential equations and the state
increase noticeably near the middle of the trajectory. At this point, the system is
changing rapidly as the pole swings up, and the uniform grid has difficulty approx-
imating the system dynamics. A more sophisticated method would compute a new
grid, in which the trajectory segments are shorter near this point where the system is
rapidly changing.
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Fig. 11 Plots showing the error in the system dynamics along the optimal trajectory for the cart-
pole swing-up example. The plots on the left show the error in the differential equations,
while the plots on the right show the integral of that error over each segment.

We selected parameters for this problem to ensure it is well behaved: we can
make small changes to the initial guess or the direct transcription method and obtain
the same basic answer. If we can change some of the problem parameters it can
make things more difficult. For example, if we increase the duration T , this causes
the optimal solution to include several swings back-and-forth before the final swing-
up. As a result, the optimization problem has many local minima, one for each
(incorrect) number of swings back and forth. Another way to make the optimization
more challenging is to reduce the actuator limits umax. If these limits are made
small enough, then the optimal solution will no longer be smooth. To solve it, we
would need to remesh the discretization (time) grid to place additional points near the
discontinuities in the force trajectory. An alternative way to address the discontinuity
in the control would be to rewrite the problem as a multiphase problem, but this is
beyond the scope of this paper.

7. Five-Link Biped Example. In this section we will use trajectory optimization
to find a periodic walking gait for a five-link (planar) biped walking model. This
model is commonly used when studying bipedal walking robots [67, 49, 43, 27, 54, 66].
For this example, we will use the model developed in [66], with parameters that are
selected to match the walking robot RABBIT [13] and given in Appendix E.2.

We will assume that the robot is left-right symmetric, so we can search for a
periodic walking gait using a single step (as opposed to a stride, which would consist
of two steps). A periodic walking gait means that joint trajectories (torques, angles,
and rates) are the same on each successive step. We will be optimizing the walking
gait such that it minimizes the integral of torque-squared along the trajectory.

7.1. Five-Link Biped: Model. Figure 12 shows the five-link biped model as it
takes a step. This model consists of a torso connected to two legs, each of which has
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swing foot
stance foot

hip

stance knee
(torque motor)

links have mass and 
rotational inertia

no ankle torque

torso motor torque

swing knee
(torque motor) link orientation

Fig. 12 Illustration of the five-link biped model. We assume that the biped is a planar kinematic
chain, with each joint connected to its parent by an ideal revolute joint and torque source.
The biped is underactuated, because the stance ankle has no motor.

an upper and a lower link. The stance leg is supporting the weight of the robot, while
the swing leg is free to move above the ground. Each link is modeled as a rigid body,
with both mass and rotational inertia. Links are connected to each other with ideal
torque motors across frictionless revolute joints, with the exception of the ankle joint,
which is passive. We have included the derivation of the equations of motion for this
model in Appendix F.

7.2. Five-Link Biped: System Dynamics. During single stance, the five-link
biped model has five degrees of freedom: the absolute angles of both lower legs (q1
and q5), both upper legs (q2 and q4), and the torso (q3), as shown in Figure 12.
We will collect these configuration variables into the single vector q. Because the
model has second-order dynamics, we must also keep track of the derivative of the
configuration, q̇. Thus, we can write the state and the dynamics as shown below,
where q̈ is calculated from the system dynamics:

x =

[
q
q̇

]
, ẋ = f

(
x,u

)
=

[
q̇
q̈

]
.

Unlike the cart-pole system, the dynamics function ẋ = f
(
x,u

)
cannot be easily

written in closed form. We show one method for deriving and evaluating the system
dynamics in Appendix F.

7.3. Five-Link Biped: Objective Function. Just like in the cart-pole example,
we will use the integral of the torque-squared cost function. This cost function tends
to produce smooth, well-behaved solutions. This is desired for a few reasons. First,
a smooth solution means that a piecewise polynomial spline will do a good job of
approximating the solution, thus the nonlinear programwill converge well. The second
reason is that a smooth solution is easier to control on a real robotic system. Finally,
minimizing the torque-squared tends to keep the solution away from large torques,
which are sometimes undesirable in real robotic systems:

(7.1) J =

∫ T

0

(
5∑

i=1

u2
i (τ)

)
dτ.

There are many other cost functions that we could have used. One common
function is cost of transport (CoT), the ratio of energy used over the trajectory to the
horizontal distance moved by the robot [59, 8]. It turns out that CoT is a difficult
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 875

cost function to optimize over, because the solutions tend to be discontinuous. The
simple example in section 8 shows a few ways to deal with such discontinuities.

7.4. Five-Link Biped: Constraints. A variety of constraints are required to pro-
duce a sensible walking gait. The constraints presented here are similar to those used
in [66].

First, we will require that the walking gait is periodic; that is, the initial state
must be identical to the final state after it is mapped through heel-strike. Heel-strike
is the event that occurs when the swing foot strikes the ground at the end of each
step, becoming the new stance foot. For a single step, let’s define x0 to be the initial
state and xF to be the final state on the trajectory, immediately before heel-strike.
Then we can express the periodic walking constraint as shown below, where fH(·) is
the heel-strike map, as defined in Appendix F:

(7.2) x0 = fH

(
xF

)
.

Next, we would like the biped to walk at some desired speed. There are many
ways to do this, but what we have chosen here is to prescribe the duration of a single
step (T ) and then put an equality constraint on step length (D). Additionally, we
assume that the robot is walking on flat ground. This constraint can then be written
as shown below, where P5(T ) is the position of the swing foot at the end of the step
and P0(t) is the position of the stance foot throughout the step. Note that we use
the [] notation to show a two element column vector, where the top element is the
horizontal component and the bottom element is the vertical component:

(7.3) P5(T ) =

[
D
0

]
. (Note: P0(t) =

[
0
0

]
by definition.)

We have added an additional constraint on the biped robot to make the problem
more interesting: that the stance ankle torque is identically zero throughout the
trajectory. This constraint is essentially like saying “the robot has small feet,” and is
widely used in the Hybrid Zero Dynamics technique for controlling walking robots [66].

When we derived the heel-strike collision equations (see Appendix F), we assumed
that the trailing foot leaves the ground at the instant the leading foot collides with
the ground. We can ensure that this is true by introducing a constraint that the
vertical component of the swing foot velocity at the beginning of the trajectory must
be positive (foot lifting off the ground) and that it must be negative at the end of the
trajectory (foot moving toward the ground). These constraints can be expressed as
inequality constraints on the initial and final states, where n̂ is the normal vector of
the ground. In our case, n̂ =

[
0
1

]
, because the ground is flat and level:

(7.4) 0 < Ṗ5(0) · n̂, 0 > Ṗ5(T ) · n̂.
Next we have a constraint to keep the swing foot above the ground at all times,

shown below. Interestingly, the optimal solution for the minimum torque-squared
walking gait keeps the foot above the ground (at least for our chosen set of parame-
ters), so this constraint is unnecessary:

(7.5) 0 < P5(t) · n̂ ∀t ∈ (0, T ).

In some cases, it might be desirable to achieve some ground clearance for the swing
foot, or to work with some nonflat ground profile. There are a few ways to do this.
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876 MATTHEW KELLY

The easiest is to require that the swing foot remain above some continuous function
y(t) of time. A slightly more complicated version is to prescribe some continuous
function y(x) that the swing foot must remain above, such as a simple quadratic
or cubic polynomial. In both cases, it is critical that the constraint is consistent
with the boundary conditions and that the implementation is smooth, to avoid over
constraining the problem. Both methods are shown below, where î =

[
1
0

]
and ĵ =[

0
1

]
:

y(t) < P5(t) · n̂ ∀t ∈ (0, T ), foot clearance (time-based),(7.6)

y
(
P5(t) · î

)
< P5(t) · ĵ ∀t ∈ (0, T ), foot clearance (state-based).(7.7)

Finally, it is worth noting one mistake that is common in these optimizations:
redundant constraints. Notice, for example, that for step length we only put a con-
straint on the final position of the foot (7.3). The initial position is fully constrained
given (7.3) and the periodic step map constraint (7.2). If we were to add a constraint
on the initial position of the foot, it would only serve to cause numerical problems in
the nonlinear program.

7.5. Five-Link Biped: Initialization. When we solve the trajectory optimization
problem, we need to provide an initial guess for the trajectory. In this case, we
created this guess by constructing an initial and a final state, and then using linear
interpolation to obtain intermediate states. We constructed the final state by selecting
joint angles that formed a reasonable walking pose. We then computed the initial joint
angles by applying the step map (see F.9) to the final state:

(7.8) q(0)guess =

⎡
⎢⎣
−0.3
0.7
0.0
−0.5
−0.6

⎤
⎥⎦ , q(T )guess =

⎡
⎢⎣
−0.6
−0.5
0.0
0.7
−0.3

⎤
⎥⎦ ,

(7.9) qguess(t) = qguess(0) +
t

T

(
qguess(T )− qguess(0)

)
.

We initialized the joint rates by differentiating the joint angle guess:

(7.10) q̇guess(t) =
d

dt

(
qguess(t)

)
=

1

T

(
qguess(T )− qguess(0)

)
.

Finally, we initialized the joint torques to be constant at zero:

(7.11) uguess(t) = 0.

Note that this initial guess does not satisfy the system dynamics (or most of the
other constraints), but it does provide something that is close to the desired walking
motion. This is the key feature of an initial guess—that it starts the optimization
close enough to the desired behavior that the optimization will find the “correct”
solution.

7.6. Five-Link Biped: Results. We solved this example problem in MATLAB,
using FMINCON’s [37] interior-point algorithm as the nonlinear programming solver.
The physical parameters used are given in Appendix E.2, and the optimization was
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 877

Fig. 13 Illustration of the optimal trajectory for the five-link biped example. The poses are uniformly
spaced in time and the biped is moving from left to right.

computed on a regular desktop computer.2 We chose to use analytic gradients (Ap-
pendix F) for the entire problem, although similar results are obtained for numerical
gradients.

All source code for solving this trajectory optimization problem, including deriva-
tion of the equations of motions, is given in the electronic supplement (see Ap-
pendix A).

We solved the problem on two meshes, using Hermite–Simpson collocation in
both cases. The initial mesh had 5 segments and a low convergence tolerance (in
FMINCON, ’TolFun’ = 1e-3). For the second (final) mesh, we used a mesh with
25 segments and increased the convergence tolerance in FMINCON to ’TolFun’
= 1e-6. Both meshes had segments of uniform duration. This process could be
repeated further, to achieve increasingly accurate solutions.

The solution on the initial (5-segment) mesh took 0.96 seconds to compute and
29 iterations in FMINCON’s interior-point method. The solution on the final (25-
segment) mesh took 21.3 seconds to compute and 56 iterations in the NLP solver.

As an aside, if we solve the problem using FMINCON’s built-in numerical deriva-
tives, rather than analytic derivatives, we obtain the same solution as before, but it
takes longer: 4.30 seconds and 29 iterations on the coarse mesh, and 79.8 seconds and
62 iterations on the fine mesh. Also, for this problem, it turns out that solving on
two different meshes is not critical; we could directly solve the problem on the fine
(25-segment) mesh and obtain similar results.

The solution for a single periodic walking step is shown in Figure 13 as a stop-
action animation with uniformly spaced frames. The same trajectory is also shown
in Figure 14, with each joint angle and torque given as a continuous function of time.
Finally, Figure 15 shows the error estimates computed along the trajectory.

8. Block-Move Example (Minimum-Work). In this section, we will revisit the
simple block-moving example from section 2 with a more challenging objective func-
tion. All other details of the problem remain unchanged: the block must move between
two points that are one unit of distance apart in one unit of time, starting and fin-
ishing at rest. The new objective function is to minimize the integral of the absolute
value of the work done by the force acting on the block.

It turns out that there is a simple analytic solution to this problem: apply maxi-
mum force to get the block up to speed, then let the block coast, then apply maximum
negative force to bring it to a stop at the target point. This type of solution, which

2Processor: 3.4GHz quad-core Intel i5-3570K.
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Fig. 14 Plots showing the optimal trajectory for the five-link biped example. Notice that the curves
are smooth, partially due to the integral of torque-squared cost function. The torque curve
for the stance ankle u1 = 0 is not shown, because it is zero by definition.
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Fig. 15 Plots showing the error in the system dynamics along the optimal trajectory for the five-
link biped example. These error estimates are computed using the techniques described in
section 5.3.

consists of alternating periods of maximum and zero control effort, is known as a
bang-bang solution. Bang-bang solutions are difficult to handle with standard direct
collocation because the discretization method (based on polynomial splines) cannot
accurately approximate the discontinuity in the solution. In this section, we will study
a few commonly used techniques for dealing with such discontinuities in the solution
to a trajectory optimization problem.

8.1. Block-Move Example: Problem Statement. Our goal here is to move a
block one unit along a one-dimensional frictionless surface, in one unit of time, along
a trajectory that minimizes the integral of the absolute work done by the control force
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 879

u. The objective function is given below, where the position and velocity of the block
are given by x and ν, respectively:

(8.1) min
u(t), x1(t), ν(t)

∫ 1

0

|u(τ) ν(τ)| dτ.

We will assume that the block has unit mass and slides without friction, so we can
write its dynamics as

(8.2) ẋ = ν, ν̇ = u.

Next, the block must start at the origin and move one unit of distance in one unit of
time. Note that the block must be stationary at both start and finish:

(8.3)
x(0) = 0,
ν(0) = 0,

x(1) = 1,
ν(1) = 0.

Finally, we will assume that the force moving the block is bounded:

(8.4) − umax ≤ u(t) ≤ umax.

8.2. Block-Move Example: Analytic Solution. The analytic solution to this
problem can be constructed using a slightly modified version of the method shown in
Appendix B, but constraints on the control and the nonlinear objective function in
this problem make the resulting formulation somewhat complicated. Instead, we will
use simple intuition to make a guess at the form of the analytic solution. We find that
the numerical results converge to this analytic solution, which suggests (but does not
prove) that it is the correct solution.

We start by observing that in the case where umax → ∞ there is a feasible solution
with zero cost: the control is a delta function at the boundaries (positive at the
beginning, negative at the end) and zero otherwise. We can then extend this solution
to nonzero values of umax by using a bang-bang control law: maximum force, then
zero force, then minimum force. This leaves two unknowns in the control trajectory:
the two switching times, which can be solved for using the boundary values for the
problem. The resulting controller is
(8.5)

u∗(t) =

⎧⎪⎨
⎪⎩
umax, t < t∗,
0 otherwise,

−umax, (1− t∗) < t,

where t∗ =
1

2

(
1−
√
1− 4

umax

)
.

The most important aspect of this solution is that the optimal control u∗(t) is
discontinuous. This means that that the linear and quadratic spline control approx-
imations used by the trapezoidal and Hermite–Simpson collocation methods cannot
perfectly represent this solution, although they can become arbitrarily close with
enough mesh refinement. One way to obtain a more precise solution would be to pose
this problem as a multiphase trajectory optimization problem [45]. These methods
are briefly discussed in section 9.9 and amount to solving the problem as a sequence of
three coupled trajectories, allowing the discontinuity to occur precisely at the switch-
ing points between trajectories.

Another interesting point is that if umax < 4, then there is no feasible solution
for the trajectory: the switching time t∗ is imaginary. Finally, if there is no force
limit umax → ∞, then the solution is impulsive: not just discontinuous, but a delta
function.
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880 MATTHEW KELLY

8.3. Block-Move Example: Discontinuities. There are two types of discontinu-
ities present in this example problem. The first is obvious: the abs() in the objective
function (8.1). The second discontinuity is found in the solution (8.5) itself.

There are two ways to handle the discontinuity in the objective function, both
of which we will cover here. The first is to rewrite the abs() using slack variables,
thus pushing the discontinuity to a set of constraints, which are easily handled by the
nonlinear programming solver. The second is to replace the abs() with a smooth
approximation. Both methods work, although they have different implications for the
convergence time and solution accuracy, as will be demonstrated in section 8.7.

The discontinuity in the solution is a bit harder to detect and address. We can
detect the discontinuity by observing that the optimization is slow to converge, and
by visually inspecting the resulting trajectories. If you’re stuck using single-phase
direct collocation, like the methods presented in this paper, then the best way to
handle the discontinuity is to smooth the problem (if possible) and then to use mesh
refinement to make a dense collocation grid near the discontinuity. If you have access
to a multiphase solver (see section 9.9), then you can break the trajectory into multiple
segments and force the discontinuity to occur between the segments.

8.4. Block-Move Example: Initialization. We will compute an initial guess for
position by linear interpolation between the initial position x(0) = 0 and final position
x(1) = 1. We then set the velocity guess to be the derivative of position and the force
(acceleration) to be the derivative of velocity. There are many other schemes that
could be used, but we choose this one because it is simple and effective. Once we have
an initial trajectory, we can evaluate it at each collocation point to obtain values to
pass to the nonlinear programming solver:

xinit(t) = t,(8.6)

νinit(t) = d
dtx

init(t) = 1,(8.7)

uinit(t) = d
dtν

init(t) = 0.(8.8)

8.5. Block-Move Example: Slack Variables. The most “correct” way to rewrite
the objective function (8.1) is using slack variables: this moves the discontinuity from
the objective function to a set of constraints. The slack variable approach here is
taken from [6]. The benefit of rewriting the trajectory optimization problem using
slack variables to represent the absolute value function is that it is mathematically
identical to the original optimization problem. That being said, there are a few
downsides to this method. The first is that the solution will still be discontinuous,
and direct collocation cannot precisely represent it (although it can get arbitrarily
close). Second, the addition of slack variables will greatly increase the size of the
nonlinear program: two additional controls and three additional constraints at every
collocation point, for each abs(). Finally, the slack variables are implemented using
a path constraint, which tends to cause the nonlinear program to converge more
slowly.

The key idea behind the slack variable approach is that you can push the dis-
continuity from the objective function to a set of constraints, where the nonlinear
programming solver can properly handle it. We start by introducing two slack vari-
ables (s1 and s2) and rewriting the objective function. Note that the slack variables
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 881

Fig. 16 Comparison of two smooth approximations for the absolute value function: hyperbolic tan-
gent smoothing (left) and square-root smoothing (right).

here are to be treated as decision variables for the purposes of transcription:

(8.9) min
u(t), x(t), v(t)

∫ 1

0

∣∣u(t) v(t)∣∣ dτ → min
u(t), x(t), v(t)

s1(t), s2(t)

∫ 1

0

(
s1(τ) + s2(τ)

)
dτ.

Next, we introduce a few constraints. The first require that the slack variables be
positive:

(8.10) 0 ≤ s1(t), 0 ≤ s2(t).

Finally, we require that the difference between the slack variables is equal to the term
inside the abs() function (8.1):

(8.11) s1(t)− s2(t) = u(t) v(t).

The set of constraints (8.10) and (8.11) means that s1(t) represents the positive part
of the argument to the abs() function, while s2(t) represents the magnitude of the
negative part.

The system dynamics, boundary constraints, and force limits remain unchanged.
This modified version of the problem is now acceptable to pass into a nonlinear pro-
gramming solver. There are many possible ways to initialize the slack variables, but
we’ve found that s1(t) = s2(t) = 0 is a good place to start.

The resulting nonlinear program does not solve quickly, but the solver will even-
tually find a solution. The result will be the best possible trajectory, given the limi-
tations caused by the spline approximation in the transcription method, as shown in
section 8.7.

8.6. Block-Move Example: Smoothing. Although the slack variable method for
representing abs() is exact, the resulting nonlinear program can be complicated to
construct and slow to solve. An alternative approach is to replace the abs() function
with a smooth approximation. This method is simple to implement and solve, but at
a loss of accuracy. Here we will discuss two smooth approximations for abs(), both
of which are given below and plotted in Figure 16:

(8.12) yα(x) = x tanh

(
x

α

)
≈ |x|,

(8.13) yβ(x) =
√
x2 + β2 ≈ |x|,

The smooth approximation to abs() using the hyperbolic tangent function (8.12),
also known as exponential smoothing, is always less than |x|, while the approxima-
tion using the square-root function (8.13) is always greater than |x|. The smoothing
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Fig. 17 Plots showing the solution to the minimal-work block-moving example, computed using var-
ious methods and parameters. In each case, the analytic solution is given by a dashed black
line, and the solid colored line gives the numerical solution using direct collocation. The left
column shows the solution when the abs() in the objective function is handled with slack
variables. The remaining columns show the result obtained using tanh() smoothing, for
light smoothing (α = 0.01), medium smoothing (α = 1.0), and heavy smoothing (α = 5.0).
Notice that the solution obtained using slack variables and light smoothing are similar to
one another, with the smoothing taking more iterations but less time. The problem solves
even faster with medium and heavy smoothing, although the solution accuracy is degraded.
Note that the smoothed version of the problem results in a more smooth solution.

parameters α and β can be used to adjust the amount of smoothing on the problem,
with the smooth versions of the functions approaching |x| as α → 0 and β → 0. The
size of these smoothing parameters and choice of smoothing method are both prob-
lem dependent. In general, smaller values for the smoothing parameters make the
nonlinear program increasingly difficult to solve, but with a more accurate solution.

One important thing to note is that smoothing fundamentally changes the op-
timization problem, and not necessarily in an obvious way. For this reason, it is
important to do convergence tests, solving the problem with successively smaller and
smaller values for the smoothing parameter to ensure the correct solution is obtained.
An example of this can be found in both [55] and [9].

8.7. Block-Move Example: Results. We solved this more complicated version
of the block-moving problem using the trapezoidal collocation method, and we used
FMINCON’s [37] interior-point solver to solve the nonlinear program. Although this
optimization problem appears simple, it is actually difficult to solve numerically with-
out careful mesh refinement (or reposing the problem using multiphase trajectory op-
timization; see section 9.9). To illustrate some trade-offs, we have solved the problem
on three different meshes, using both slack variables and smoothing to handle the
abs() function in the objective. Figure 17 shows the solution for each of these differ-
ent setups and compares each one to the analytic solution. All solutions were obtained
using the same solver settings and initialization, and the source code is included in
the electronic supplement (see Appendix A).
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 883

One interesting thing to notice is that all of these solutions require a large number
of iterations to solve the nonlinear program, compared to both the cart-pole swing-up
problem and the five-link biped problem. This might seem odd, since this block-
pushing problem looks like it should be easier. The difficulty, as best we can tell,
comes from the discontinuity in the solution.

The solution obtained using slack variables (left column) converges to the analytic
solution, although it takes some time and a very fine mesh. The solution using light
smoothing (α = 0.01) is quite close to the solution obtained with slack variables, al-
though the smooth version of the problem takes more iterations (because the problem
is stiff) and less time (because of the smaller number of decision variables). As the
smoothing parameter is increased (α = 1.0 and α = 5.0), the solution is obtained
faster, at a loss of accuracy.

9. Background. The topics in this section are selected to provide the reader with
a broad understanding of some of the concepts that are related to direct collocation.
We start with a few topics about optimization in general and then move on to other
methods for solving trajectory optimization problems. We conclude with a method
comparison and a list of optimization software.

9.1. Trajectory Optimization vs. Parameter Optimization. Trajectory opti-
mization is concerned with minimizing a functional J

(
f(t)

)
, where f(t) is an arbitrary

vector function. In contrast, parameter optimization is concerned with minimizing
some function J(x), where x is a vector of real numbers. This makes trajectory
optimization more challenging than parameter optimization, because the space of
functions is much larger than the space of real numbers.

9.2. Open-Loop vs. Closed-Loop Solutions. Trajectory optimization is a col-
lection of techniques that are used to find open-loop solutions to an optimal control
problem. In other words, the solution to a trajectory optimization problem is a se-
quence of controls u∗(t), given as a function of time, that moves a system from a single
initial state to some final state. This sequence of controls, combined with the initial
state, can then be used to define a single trajectory that the system takes through
state space.

There is another set of techniques, known as dynamic programming, which find an
optimal policy. Unlike an optimal trajectory, an optimal policy provides the optimal
control for every point in the state space. Another name for the optimal policy is the
closed-loop solution to the optimal control problem. An optimal trajectory starting
from any point in the state space can be recovered from a closed-loop solution by a
simple simulation. Figure 18 illustrates the difference between an open-loop and a
closed-loop solution.

In general, trajectory optimization is most useful for systems that are high-
dimensional, have a large state space, or need to be very accurate. The resulting
solution is open-loop, so it must be combined with a stabilizing controller when ap-
plied to a real system. One major shortcoming of trajectory optimization is that it
will sometimes fail to converge, or will converge to a locally optimal solution, failing
to find the globally optimal solution.

Dynamic programming (computing an optimal policy) tends to be most useful on
lower-dimensional systems with small but complex state spaces, although some vari-
ants have been applied to high-dimensional problems [46]. There are two advantages
to dynamic programming over trajectory optimization. The first is that dynamic pro-
gramming gives the optimal control for every point in state space, and can thus be
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884 MATTHEW KELLY

Fig. 18 Comparison of an open-loop solution (optimal trajectory) with a closed-loop solution (op-
timal policy). An open-loop solution (left) to an optimal control problem is a sequence of
controls u(t) that move the system from a single starting point A to the destination point
B. In contrast, the closed-loop solution gives the controls u(x) that can move the system
from any point in the state space to the destination point B.

applied directly to a real system. The second and perhaps more important advantage
is that it will (at least in the basic formulations) always find the globally optimal
solution. The downside of dynamic programming is that computing the optimal so-
lution for every point in the state space is very expensive, scaling exponentially with
the dimension of the problem—the so-called curse of dimensionality [42].

9.3. Continuous-Time and Discrete-Time Systems. Trajectory optimization
is generally concerned with finding optimal trajectories for a dynamical system. The
dynamics describe how the state of a system changes in response to some input or
decision, typically referred to as a control.

There are many different types of dynamical systems. In this tutorial we have
focused on continuous-time dynamical systems, which have continuous time, state,
and control. This type of system is common in robotics and the aerospace industry,
for example, when planning the trajectory that a spacecraft will take between two
planets:

(9.1) ẋ = f(t,x,u), continuous-time system.

Another common system is a discrete-time dynamical system, which has discrete
time steps, but continuous state and control. This type of system is commonly used
in model predictive control, for example, in building climate control systems [36].
Trajectory optimization for these systems is generally easier than for fully continuous
systems. Discrete-time systems are often constructed to approximate continuous time
systems:

(9.2) xk+1 = fk(xk,uk), discrete-time system.

A final type of dynamical system is a directed graph, where there is a finite set of
states (nodes on the graph) and controls (transitions, actions, edges on the graph).
Most algorithms for computing an optimal policy (optimal control from every point in
the state space) require the dynamical system to be in this discrete form. A common
example would be a traffic network, where there is a discrete set of states (cities) and a
discrete set of controls (roads out of each city). Sometimes continuous-time problems
are abstracted into this form so that they can make use of sophisticated graph search
algorithms to approximate the optimal policy.

9.4. Indirect Methods. Both the trapezoidal and Hermite–Simpson collocation
methods presented in this tutorial are direct methods, which discretize the trajectory
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 885

optimization problem, converting it into a nonlinear program. There is another set
of methods for solving trajectory optimization problems, known as indirect methods.
Indirect methods analytically construct the necessary and sufficient conditions for op-
timality, then they discretize these conditions and solve them numerically. A common
way to distinguish these two methods is that a direct method discretizes and then
optimizes, while an indirect method optimizes and then discretizes.

Let’s consider a simple scalar optimization problem to illustrate how an indirect
method works: minimizing y = f(t). Basic calculus tells us that the minimum value
y∗ = f(t∗) will occur when the derivative is zero, y′(t∗) = 0. Additionally, we need to
check that the curvature is positive, y′′(t∗) > 0, ensuring that we have a local mini-
mum, rather than a local maximum (or saddle point). If both of those conditions hold,
then we know that y∗ = f(t∗) is indeed a local minimum. An indirect optimization
works along the same principle, but the conditions are a bit more difficult to construct
and solve. In contrast, a direct method will minimize y(t) by constructing a sequence
of guesses such that each subsequent guess is an improvement on the previous one:
y(t0) > y(t1) > · · · > y(t∗) [6].

The major benefit of an indirect method, when compared to a direct method,
is that an indirect method will generally be more accurate and will have a more
reliable error estimate. Both of these benefits come from the analytic expressions for
the necessary and sufficient conditions that the user derives while constructing the
indirect problem.

There are several difficulties associated with indirect methods when compared
to direct methods. For example, the region of convergence tends to be smaller for
indirect methods than direct methods, which means that an indirect method will
require a better initialization [5]. Furthermore, the initialization of an indirect method
is complicated by the need to initialize the adjoint variables, which are not used in
a direct method [6]. Finally, in order to obtain an accurate solution for an indirect
method, it is typically necessary to construct the necessary and sufficient conditions
analytically, which can be challenging [5].

9.5. Direct Single Shooting. Like direct collocation, the direct single shooting
method (also known as single shooting) solves a trajectory optimization problem by
transforming it into a nonlinear program. The key difference is that a direct shooting
method approximates the trajectory using a simulation. The decision variables in
the nonlinear program are an open-loop parameterization of the control along the
trajectory, as well as the initial state. Direct shooting is well suited to applications
where the control is simple and there are few path constraints, such as space flight [5].

9.6. Direct Multiple Shooting. A common extension of the direct single shoot-
ing method is direct multiple shooting (also called parallel shooting). Rather than
representing the entire trajectory as a single simulation, the trajectory is divided up
into segments, and each segment is represented by a simulation. Multiple shooting
tends to be much more robust than single shooting, and thus is used on more chal-
lenging trajectory optimization problems [5].

When compared to collocation methods, shooting methods tend to create small
dense nonlinear programs, which have fewer decision variables that are more coupled.
One difficulty with direct shooting methods is that it is difficult to implement path
constraints, since the intermediate state variables are not decision variables in the
nonlinear program [5]. Another difficulty with shooting methods, particularly with
direct shooting, is that the relationship between the decision variables and constraints
is often highly nonlinear, which can cause poor convergence in some cases [5, 6].
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886 MATTHEW KELLY

9.7. Orthogonal Collocation. Orthogonal collocation is similar to direct collo-
cation, but it generally uses higher-order polynomials. The collocation points for
these methods are located at the roots of an orthogonal polynomial, typically either
Chebyshev or Legendre [15]. Increasing the accuracy of a solution is typically achieved
by increasing either the number of trajectory segments or the order of the polynomial
in each segment.

One important reason to use high-order orthogonal polynomials for function ap-
proximation is that they achieve spectral convergence. This means that the conver-
gence rate is exponential in the order of the polynomial [51], if the underlying function
is sufficiently smooth [58]. In cases where the entire trajectory is approximated using a
single high-order polynomial, the resulting method is called pseudospectral collocation
or global collocation [51].

One of the key implementation details about orthogonal collocation is that the tra-
jectory is represented using barycentric interpolation [4], rather than directly from the
definition of the orthogonal polynomial. Barycentric interpolation provides a numeri-
cally efficient and stable method for interpolation, differentiation, and quadrature, all
of which can be computed by knowing the trajectory’s value at the collocation points.
See Appendix D for further details about how to work with orthogonal polynomials.

9.8. Differential Dynamic Programming. One final method is differential dy-
namic programming. It is similar to direct shooting, in that it simulates the system
forward in time and then optimizes based on the result of that simulation. The
difference is in how the optimization is carried out. While direct shooting uses a
general-purpose nonlinear programming solver, the differential dynamic programming
algorithm optimizes the trajectory by propagating the optimal control backward along
the candidate trajectory. In other words, it exploits the time-dependent nature of the
trajectory. It was described in [39, 31], and a good overview was provided by [41].

9.9. Multiphase Methods. There are many trajectory optimization problems
that have a sequence of continuous-motion phases separated by discrete jumps. One
common example is the trajectory of a multistage rocket, which has continuous mo-
tion punctuated by discrete changes when each stage separates. Another example is
the gait of a walking robot, which has a discontinuity as each foot strikes the ground.
Solving a multiphase problem is sort of like solving multiple single-phase problems in
parallel. The key difference is that the boundary constraints between any two phases
can be connected, thus coupling the trajectory segments. Multiphase methods are
covered in detail in [45, 63].

9.10. Through-Contact Methods. Through-contact methods are specialized for
computing optimal trajectories for hybrid dynamical systems that describe contact
mechanics: imagine the gait of a walking robot, or two objects colliding and then
falling to the ground. Most physics simulators use a complementarity constraint to
model contact between two rigid objects: a contact force is allowed if and only if
the two objects are in contact. The key idea in through-contact optimization is to
treat the contact forces as decision variables in the optimization, and then apply
a complementarity constraint at each grid point: the contact force must be zero
unless the objects are in contact. These methods are covered in detail in [48], [47],
and [40].

9.11. Which Method Is Best?. In short, there is no best method for trajectory
optimization. There are many trade-offs between the different methods, and a good
understanding of these trade-offs will help determine which method is best for a
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 887

specific application. A good high-level comparison of methods can be found in [5]
and [51]. Here I will provide a brief overview of some of these trade-offs.

In general, indirect methods tend to produce more accurate solutions than direct
methods, at the cost of being more difficult to construct and solve. This is because
indirect methods explicitly compute the necessary and sufficient conditions for op-
timality of the original problem, while a direct method precisely solves a discrete
approximation of the original problem. One common approach to obtaining accurate
solutions is to first compute an approximation of the solution using a direct method,
and then use this to initialize an indirect method. As a side note: both shooting and
collocation (transcription) methods can be applied to either a direct or an indirect
formulation of a trajectory optimization problem [6].

Shooting methods are best for applications where the dynamics must be com-
puted accurately, but the control trajectory is simple, for example, in computing the
trajectory of a spacecraft, where you occasionally fire the thrusters to change course,
but otherwise follow a ballistic trajectory. Multiple shooting methods are generally
preferred over single shooting, except in cases where the control is very simple or the
initial guess is very good.

Collocation (transcription) methods are best for applications where the dynamics
and control must be computed to a similar accuracy, and the structure of the control
trajectory is not known a priori, for example, in computing the torque to send to the
joints of a robot as it performs some motion.

Both shooting and collocation methods can be either low or high order. High-
order collocation methods are given a special name: orthogonal collocation. Trape-
zoidal collocation would be considered a low-order method, while Hermite–Simpson
collocation would usually be considered a medium-order method. The trade-off be-
tween using a method with more low-order segments or one with fewer high-order
segments is complicated [16]. The general approach is to use a relatively lower-order
method to obtain an initial solution to the trajectory and then perform an error anal-
ysis [6, 16]. The result will indicate whether it is better to remesh the trajectory using
additional lower-order segments or to replace lower-order segments with higher-order
segments.

In situations where you need to compute the trajectory for a hybrid system, there
are two choices: multiphase optimization (section 9.9) and through-contact optimiza-
tion (section 9.10). Multiphase optimization is preferable for most situations: the
optimizations are easier to compute and tend to be more accurate. Through-contact
optimization is preferable when the discontinuities are due to contact mechanics and
the sequence of continuous-motion phases is unknown.

9.12. Trajectory Optimization Software. There are a variety of software pro-
grams that solve trajectory optimization problems, some of which are given in Table 1.
Each of these solvers performs some transcription method and then hands the problem
off to a nonlinear programming solver.

Table 2 shows a few popular software packages for solving nonlinear programming
problems.

The electronic supplement, described in Appendix A, also includes a MATLAB
library for trajectory optimization. It was written to accompany this tutorial, and it
implements trapezoidal and Hermite–Simpson collocation, as well as all four example
problems.

10. Summary. The goal of this tutorial is to give the reader an understanding of
the concepts required to implement their own direct collocation methods. We focus
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888 MATTHEW KELLY

Table 1 Trajectory optimization software.

Name License Interface Method

GPOPS-II [45] commercial MATLAB direct orthogonal collocation

PSOPT [2] open source C++ direct collocation

SOS [7] commercial GUI direct collocation (methods from [6])

DIRCOL [63] free license C direct collocation

DIDO [52] commercial MATLAB indirect orthogonal (pseudospectral) collocation

Table 2 Nonlinear programming solvers.

Name License Interface

FMINCON [37] MATLAB (commercial) MATLAB

SNOPT [25] commercial C++

IPOPT [64] open source C++

primarily on trapezoidal and Hermite–Simpson collocation, and we briefly touch on
a variety of other methods. We include practical suggestions, debugging techniques,
and a complete set of equations and derivations. Throughout the tutorial we convey
concepts through a sequence of four example problems, and the electronic supplement
shows how to solve each example using MATLAB.

Appendix A. Overview of Electronic Supplementary Material. This tutorial
has an accompanying electronic supplement that contains two parts. The first part
is a general-purpose trajectory optimization library, written in MATLAB, that solves
trajectory optimization problems of the type presented here. The second part of the
supplement is a set of code that solves each of the example problems in this tutorial.
There are also a few other MATLAB scripts, which can be used to derive some of the
equations in the text and to generate some of the simple figures.

All of the source code in the electronic supplement is well documented, with the
intention of making it easy to read and understand. Each directory in the supplement
contains a README file that gives a summary of the contents.

A.1. Trajectory Optimization Code. The electronic supplement includes a
general-purpose MATLAB library for solving trajectory optimization problems, writ-
ten by the author. The source code is well documented, such that it can be read as a
direct supplement to this tutorial. The code is still under development, and the most
up-to-date version is publicly available on GitHub:

https://GitHub.com/MatthewPeterKelly/OptimTraj

The trajectory optimization code allows the user to choose from four different
methods: trapezoidal direct collocation, Hermite–Simpson direct collocation, fourth-
order Runge–Kutta direct multiple shooting, and Chebyshev orthogonal collocation
(global Lobatto method). The user can easily switch between methods and specify a
mesh refinement schedule.

The solution is returned to the user at each grid point along the trajectory. In
addition, a function handle is provided to compute method-consistent interpolation
for each component of the solution and both direct collocation methods provide the
user with an error estimate along the solution trajectory.
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A.2. Example Problems. The electronic supplement includes a solution (in
MATLAB) to each of the four examples in this tutorial. Each example is in its
own directory and calls the trajectory optimization code from Appendix A.1. Some
example problems are implemented with many files, but the entry-point script always
has the prefix MAIN. In some cases an additional script with the prefix RESULTS is
included, which is used to generate figures from the tutorial.

Both the cart-pole and five-link biped examples make use of the MATLAB sym-
bolic toolbox to generate their equations of motion. These automatically generated
files have the prefix autoGen and are created by a script with the prefix Derive.

Appendix B. Analytic Solution to Block-Move Example. In this section we
show how to find the analytic solution to the block-moving problem from section 2.
The method presented here is based on the calculus of variations and is described in
detail in the textbook by Bryson and Ho [11]. Here we show two slightly different
solution methods. The first solution, in section B.1, treats the problem as a true
optimal control problem, where the state and control are separate and the dynamics
are handled with multiplier functions. The second solution, in section B.2, simplifies
the problem by first substituting the dynamics into the cost function.

B.1. Full Solution. We would like to minimize the cost functional J(), given
below, where u is the control force applied to the block,

(B.1) J(t, z, u) =

∫ 1

0

u2(τ) dτ.

The system dynamics f() are given below, where x is position, ν is velocity, and
z = [x, v]T is the state vector:

(B.2) ż =

[
ẋ
ν̇

]
= f(z, u) =

[
v
u

]
.

We will also apply the following boundary conditions, where subscripts are used to
denote evaluation at the boundary points on the trajectory:

(B.3) z0 = z(t)|t=0 =

[
x0

ν0

]
=

[
0
0

]
, z1 = z(t)|t=1 =

[
x1

ν1

]
=

[
1
0

]
.

We need to satisfy the dynamics to ensure a feasible solution. This is done by mod-
ifying the cost functional to include the system dynamics and a vector of multiplier
functions λ = [λx, λν ]

T . Notice that when the dynamics are satisfied, f − ż = 0 and
thus J̄ = J , regardless of what the multiplier functions are:

(B.4) J̄ =

∫ 1

0

(
u2(τ) + λT (f − ż)

)
dτ.

Now we can use integration by parts to rewrite the modified cost function [11]. Here
we again use the subscript notation to indicate evaluation at the boundary condition
(e.g., λ0 = λ(t)|t=0):

(B.5) J̄ = λT
0 z0 − λT

1 z1 +

∫ 1

0

(
u2(τ) + λTf

)
+
(
λ̇Tz

)
dτ.

At this point, it is useful to define two quantities that will be useful throughout the
rest of the derivation. The first is the Lagrangian L, which is the term inside the
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890 MATTHEW KELLY

integral of the original cost function J . The second term is the Hamiltonian H, which
is the sum of the Lagrangian and product of the multiplier functions with the system
dynamics [11]:

L = u2,(B.6)

H = L+ λTf = u2 + λxν + λνu.(B.7)

Consider a simple optimization problem: finding the minimum of a scalar function.
The minimum will occur when the first derivative is zero and the second derivative
is positive. A similar principle can be used for trajectories, although we use the term
variation instead of derivative. An optimal trajectory must have a first variation
equal to zero and a second variation that is nonnegative. Here we will focus on the
necessary condition, that the first variation is zero.

Let’s suppose that the optimal trajectory is given by z∗ and u∗. A trajectory
that is suboptimal can now be written as a sum of the optimal trajectory and a small
perturbation from that trajectory, as shown below, where ε is a small parameter and
δz and δu are small (arbitrary) variations in the state and control:

(B.8) δz = z∗ + ε δz, u = u∗ + ε δu.

The first variation of the cost function is its partial derivative with respect to this
small parameter ε:

(B.9) δJ̄ ≡ ∂

∂ε
J̄

∣∣∣∣
ε=0

.

Using the chain rule, we can now write out an expression for the first variation of the
cost function [11]:

δJ̄ = λT
0

∂z0
∂ε

∣∣∣∣
ε=0

− λT
1

∂z1
∂ε

∣∣∣∣
ε=0

+

∫ 1

0

[
∂H
∂ε

∣∣∣∣
ε=0

+ λ̇T ∂z

∂ε

∣∣∣∣
ε=0

]
dτ,(B.10)

δJ̄ = λT
0 δz0 − λT

1 δz1 +

∫ 1

0

[(
∂H
∂z

+ λ̇T

)
δz +

∂H
∂u

δu

]
dτ.(B.11)

The first variation of the cost function δJ̄ (B.11) must be zero along the optimal
trajectory. The variations in state at the initial and final points on the trajectory are
zero, since the boundary conditions are fixed (δz0 = 0, δz1 = 0). Thus the first two
terms in (B.11) are both zero. The variations in state δz and in control δu along the
trajectory are arbitrary, thus each of their coefficients must be zero in order for the
integral term to be zero:

δH
δz

+ λ̇T = 0,(B.12)

δH
δu

= 0.(B.13)

These two equations (B.12) and (B.13) form the necessary conditions for optimality:
a solution that satisfies them will be at a stationary point. To be rigorous, we would
also need to show that the second variation is nonnegative, which implies that the
solution is at a minimum (as opposed to a maximum or saddle point). This calculation
is beyond the scope of this paper, but is covered in [11].
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 891

The next step is to solve for the multiplier functions, which we do by rearranging
(B.12) to give us the differential equations

−λ̇T =
δH
δz

,(B.14)

λ̇ = −
(
∂L
∂z

)T

−
(
∂f

∂z

)T

λ.(B.15)

We can now evaluate (B.15) for our specific problem:

(B.16)

[
λ̇x

λ̇ν

]
= −

[
0
0

]
−
[
0 0
1 0

] [
λx

λν

]
.

This system of equations (B.16) is linear, and thus a solution is easily obtained, where
c0 and c1 are constants of integration and time is given by t:

λx = c0,(B.17)

λν = c1 − c0t.(B.18)

Now that we know the multiplier functions, we can go back and solve for the control
functions using (B.13):

0 =
∂H
∂u

,(B.19)

0 =
∂

∂u

(
u2 + λxν + λνu

)
,(B.20)

0 = 2u+ 0 + (c1 − c0t),(B.21)

u = 1
2 (c0t− c1).(B.22)

We can use the system dynamics to obtain expressions for the position and velocity
as functions of time:

ν =

∫
u(τ) dτ = 1

4c0t
2 − 1

2c1t+ c2,(B.23)

x =

∫
ν(τ) dτ = 1

12c0t
3 − 1

4c1t
2 + c2t+ c3.(B.24)

Next, we need to solve for the unknown constants of integration ci. We can do this
by constructing a linear system from the boundary conditions:⎡

⎢⎢⎣
x(0)
v(0)
x(1)
v(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
1
12

−1
4 1 1

1
4

−1
2 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
c0
c1
c2
c3

⎤
⎥⎥⎦ .(B.25)

Solving the linear system and substituting in the coefficients yields the solution below,
which is valid for the domain of the problem t ∈ [0, 1]:

x(t) = −2t3 + 3t2,(B.26)

ν(t) = −6t2 + 6t,(B.27)

u(t) = −12t+ 6.(B.28)
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892 MATTHEW KELLY

B.2. Short Solution. For this problem, a shorter solution can be obtained since
the control u is simply the second derivative of the position x. As a result, our cost
function can be written as

(B.29) J =

∫ 1

0

u2(τ) dτ =

∫ 1

0

ẍ2(τ) dτ.

In this case, we obtain the Lagrangian

(B.30) L(t, x, ẋ, ẍ) = L(ẍ) = ẍ2.

For a fully rigorous solution, one would need to show that the first variation of the
objective function is zero and the second variation is nonnegative. Here we will focus
on the first variation, which is the necessary condition for the optimal solution x∗.
The following equation is constructed using integration by parts:

(B.31)
∂L
∂x∗ − d

dt

∂L
∂ẋ∗ − d2

dt2
∂L
∂ẍ∗ = 0.

The first two terms are zero, since L depends only on ẍ. The final term can be
evaluated and simplified to arrive at the following ordinary differential equation:

(
0
)− (0)− d2

dt2
(
2ẍ∗) = 0,(B.32)

d4

dt4
x∗ = 0.(B.33)

The solution to this equation is a cubic polynomial with four unknown coefficients,
identical to that found in (B.24). We solve for these coefficients using the boundary
conditions (B.3) to arrive at the solution

(B.34) x(t) = −2t3 + 3t2.

Appendix C. Derivation of Simpson Quadrature. Simpson quadrature is used
to compute an approximation to the definite integral of a function by evaluating it
at the boundaries and midpoint of the domain. It is precise when this function (the
integrand) is quadratic, and we will use this fact to derive the rule. Let’s start with
the following quadratic curve ν(t):

(C.1) ν(t) = A+Bt+ Ct2.

Now suppose that we wish to compute a quantity x by integrating the function ν(t):

x =

∫ h

0

ν(t) dt,(C.2)

x =

∫ h

0

A+Bt+ Ct2 dt,(C.3)

x = At+ 1
2Bt2 + 1

3Ct3
∣∣h
0
,(C.4)

x = Ah+ 1
2Bh2 + 1

3Ch3.(C.5)

We can use the value of ν at three points to uniquely determine the value of the
coefficients A, B, and C. We will choose these points to be at the boundaries and
midpoint of the interval:

(C.6) ν(0) = νL, ν(h2 ) = νM , ν(h) = νU .
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 893

Doing a bit of algebra will show that the coefficients are given by

A = νL,(C.7)

Bh = −3νL + 4νM − νU ,(C.8)

Ch2 = 2νL − 4νM + 2νU .(C.9)

Finally, we can plug these coefficients into (C.5) and then simplify to arrive at Simp-
son’s rule for quadrature:

(C.10) x = h
6

(
νL + 4νM + νU

)
.

Appendix D. Orthogonal Polynomials. All direct collocation methods are based
on using polynomial splines to approximate continuous functions. The trapezoidal and
Hermite–Simpson methods that we covered in this article both use relatively low-order
polynomial splines. Orthogonal collocation methods are similar, but use high-order
splines instead. Working with these high-order polynomials requires some special
attention to ensure that the implementations are numerically stable.

The basic idea behind function approximation with orthogonal polynomials is that
any function can be represented by an infinite sum of basis functions. The Fourier
series is one well-known example, where you can represent an arbitrary function by
an infinite sum of sine and cosine functions. A rough approximation of the function
can be made by including a small number of terms in the sum, while a more accurate
approximation can be made by including more terms. It turns out that if the function
of interest is smooth, as is often the case in trajectory optimization, then orthogonal
polynomials make an excellent choice of basis function. The number of terms in the
infinite series is related to the order of the polynomial: a higher-order polynomial
approximation will be more accurate. There are many papers that cover the detailed
mathematics of orthogonal polynomials [26, 44, 4, 33, 58, 28] and their use in tra-
jectory optimization [29, 62, 18, 30, 19, 53, 3, 57, 23, 24, 15, 21]. Here we will focus
on the practical implementation details and on gaining a qualitative understanding
of how orthogonal collocation works.

For the rest of this section, let’s assume that we have some function f(t) that we
would like to approximate over the interval [−1, 1]. We can do this using barycentric
interpolation: representing the function’s value at any point on the interval by a
convex combination of its value at several carefully chosen interpolation (grid) points.
We will write these points as ti and the value of the function at these points as fi.
The set of points ti can then be used to compute a set of interpolation weights vi,
quadrature weights wi, and a differentiation matrix D. If the points ti are chosen
to be the roots of an orthogonal polynomial, and the function f(t) is smooth, then
the resulting interpolation, integration, and differentiation schemes tend to be both
accurate and easy to compute. Other distributions of points ti do not give nice
results. For example, choosing ti to be uniformly spaced over the interval will result
in numerically unstable schemes [4].

Orthogonal collocation techniques for trajectory optimization make extensive use
of these properties of orthogonal polynomials. In particular, the differentiation matrix
can be used to construct a set of collocation constraints to enforce the dynamics of a
system, the quadrature weights can be used to accurately approximate an integral cost
function or constraint, and barycentric interpolation can be to evaluate the solution
trajectory.

For the rest of this section we will assume that the function of interest has been
mapped to the interval t ∈ [−1, 1]. If the function is initially defined on the interval
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894 MATTHEW KELLY

τ ∈ [τA, τB], this mapping can be achieved by

(D.1) t = 2
τ − τA
τB − τA

− 1.

D.1. Computing Polynomial Roots. An orthogonal polynomial approximation
can be defined by the value of the function f(t) at the roots ti of that orthogonal
polynomial. There are many different orthogonal polynomials to choose from, each
of which has slightly different properties. The ChebFun [17] library for MATLAB
provides subroutines for computing the interpolation points ti, interpolation weights
vi, and quadrature weights wi for most common orthogonal polynomials.

The Chebyshev orthogonal polynomials are one popular choice, in part because
their roots are easy to compute. The Chebyshev–Lobatto points, also called the
Chebyshev points of the second kind, are given by [58] and shown below:

(D.2) ti = cos

(
iπ

n

)
, 0 ≤ i ≤ n.

The Legendre orthogonal polynomials are also commonly used. Unlike the Cheby-
shev polynomials, the roots of the Legendre polynomials have no closed-form solution
and must be numerically computed. The methods for computing these points are
given by [26, 28], although various subroutines can be found with a quick Internet
search. ChebFun [17] has a particularly good implementation for MATLAB.

There are three commonly used sets of Legendre points. The Legendre-Gauss
points are given by the roots of the Pn(t), the nth-degree Legendre polynomial. The
Legendre–Gauss–Radau points are given by the roots of Pn(t) + Pn−1(t). Finally,
the Legendre–Gauss–Lobatto points is given by the roots of Ṗn−1(t) along with the
boundary points −1 and 1 [24].

The important distinction between these three sets of points is whether or not
the endpoints of the interval are included in a given set of points. Orthogonal collo-
cation schemes can be constructed from any of these sets of points, although they will
have different properties [24]. Here we have outlined these points for the Legendre
polynomials, but the naming convention (Gauss, Radau, and Lobatto) applies to any
orthogonal polynomial. Figure 19 shows an illustration of the Gauss, Radau, and
Lobatto points for the Legendre orthogonal polynomials.

Collocation methods whose collocation points include both endpoints of a segment
are called Lobatto methods. Two popular Lobatto methods are the trapezoidal collo-
cation and Hermite–Simpson collocation methods [6]. A high-order Lobatto method
based on Chebyshev orthogonal polynomials is described in [19].

A Gauss method is one where the neither endpoint of the segment is a collocation
point. A common low-order example would be the implicit midpoint method. A
high-order Gauss method based on Legendre orthogonal polynomials is described
in [22, 21].

Finally, a Radau method is one where a single endpoint of each segment is a
collocation point, such as the backward Euler Method. The trajectory optimization
software GPOPS [45] uses a high-order Radau method, based on Legendre orthogonal
polynomials.

These three types of methods are discussed in more detail in [23, 24] and are
illustrated in Figure 19. Garg et al. [24] suggest that high-order Lobatto colloca-
tion schemes should be avoided in trajectory optimization, due to poor numerical
properties, and that schemes based on Radau and Gauss points should be preferred.
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 895

Gauss Points Radau Points Lobatto Points

Fig. 19 Illustration showing the three sets of points that are associated with each orthogonal polyno-
mial. In this figure we have shown the Gauss, Radau, and Lobatto points for the fourth-order
Legendre orthogonal polynomials. The dashed line in each figure is the same, and the solid
lines show the barycentric interpolant that is defined by that set of collocation points. Notice
that the interpolant behaves differently for each set of points.

D.2. Barycentric Lagrange Interpolation. The best way to store and evaluate
high-order orthogonal polynomials is using barycentric Lagrange interpolation. This
works by expressing the value of the function at any point f(t) using a weighted com-
bination of the function’s value (fi = f(ti)) at the roots of the orthogonal polynomial
(ti). The equation for barycentric interpolation is given below, with further details
in [4]. Note that this expression is not valid when evaluated at the interpolation points
t = ti. This is not a problem, since the value of the function at these points is already
known to be fi.:

(D.3) f(t) =

n∑
i=0

vi
t− ti

fi

n∑
i=0

vi
t− ti

.

Thus far, we know all parameters in (D.3) except for the interpolation weights vi.
These weights are calculated below, using the equation given by [4]:

(D.4) vi =
1∏

j �=i(ti − tj)
, i = 0, . . . , n.

Interestingly, the barycentric interpolation formula (D.3) will still interpolate the
data at points fi if the weights vi are chosen arbitrarily. The choice of weights given
by (D.4) is special in that it defines the unique polynomial interpolant, while any other
choice of weights will result in interpolation by some rational function [4].

Notice that these weights can be scaled by an arbitrary constant and still pro-
duce the correct interpolation in (D.3), as well as the correct differentiation matrix
(D.6). For example, ChebFun [17] normalizes the barycentric weights such that the
magnitude of the largest weight is 1.

In an orthogonal collocation method, barycentric interpolation would be used to
evaluate the solution. It is not used when constructing the nonlinear program.

D.3. Differentiation Matrix. Another useful property of orthogonal polynomials
is that they are easy to differentiate. Let’s define a column vector f = [f0, f1, . . . , fn]

T

which contains the value of f() at each interpolation point ti. It turns out that we
can find some matrix D that can be used to compute the derivative of f() at each
interpolation point (D.5):

(D.5) ḟ = Df .
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896 MATTHEW KELLY

Each element of the differentiation matrix D can be computed as shown below, using
a formula from [4]:

(D.6) Dij =

⎧⎪⎪⎨
⎪⎪⎩

vj/vi
ti − tj

, i 	= j,

−
∑
i�=j

Dij , i = j.

We can use the same interpolation weights vi for interpolation of this derivative ḟ(t)—
we just replace the fi terms in (D.3) with ḟi to obtain

(D.7) ḟ(t) =

n∑
i=0

vi
t− ti

ḟi

n∑
i=0

vi
t− ti

.

D.4. Quadrature. Each type of orthogonal polynomial has a corresponding
quadrature rule to compute its definite integral. In orthogonal collocation, these
quadrature rules are used to evaluate integral constraints and objective functions.
The quadrature rule is computed as shown below, and is a linear combination of the
function value at each interpolation point (ti):

(D.8)

∫ 1

−1

f(τ) dτ ≈
n∑

i=0

wi · fi.

Typically these quadrature weights (wi) are computed at the same time as the
interpolation points (ti) and weights (vi). Alternatively, the quadrature weights can be
determined directly from the interpolation points and weights, although the equations
are specific to each type of orthogonal polynomial. For example, the Legendre–Gauss
quadrature weights and the Legendre–Gauss–Lobatto weights can be computed as

wi = W
v2i

(1− t2i )
, Legendre–Gauss,(D.9)

wi = Wv2i , Legendre–Gauss–Lobatto.(D.10)

In both cases the scaling constant W should be selected such that
∑

wi = 2. This
scaling can be derived by computing the integral of unity fi = 1:

(D.11)

∫ 1

−1

dτ = 2 =

n∑
i=0

wi · (1).

More details on the calculation of quadrature rules can be found in [58, 20, 32, 65].

Appendix E. Parameters for Example Problems. In this section we provide
tables for the parameter values that we used when generating the results for both the
cart-pole swing-up example problem and the five-link biped example problem.

E.1. Cart-Pole Swing-Up Parameters. For the cart-pole swing-up problem we
chose parameters for our model to match something that might be seen in a cart-pole
in a controls lab demonstration. given in Table 3.

E.2. Five-Link Biped Parameters. For the five-link biped walking gait example
we chose parameters for our model to match the walking robot RABBIT [66, 13],
which are reproduced in Table 4. We also selected a trajectory duration of T = 0.7s
and a step length of D = 0.5m.
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 897

Table 3 Physical parameters for the cart-pole example.

Symbol Value Name
m1 1.0 kg mass of cart
m2 0.3 kg mass of pole
� 0.5 m pole length
g 9.81 m/s2 gravity acceleration
umax 20 N maximum actuator force
dmax 2.0 m extent of the rail that cart travels on
d 1.0 m distance traveled during swing-up
T 2.0 s duration of swing-up

Table 4 Physical parameters for the five-link biped model (RABBIT) [13].

Symbol Value Name
m1, m5 3.2 kg mass of tibia (lower leg)
m2, m4 6.8 kg mass of femur (upper leg)
m3 20 kg mass of torso

I1, I5 0.93 kg-m2 rotational inertia of tibia, about its center of mass
I2, I4 1.08 kg-m2 rotational inertia of femur, about its center of mass
I3 2.22 kg-m2 rotational inertia of torso, about its center of mass
�1, �5 0.4 m length of tibia
�2, �4 0.4 m length of femur
�3 0.625 m length of torso
d1, d5 0.128 m distance from tibia center of mass to knee
d2, d4 0.163 m distance from femur center of mass to hip
d3 0.2 m distance from torso center of mass to hip

Fig. 20 Kinematics for the five-link biped model. The illustration shows both joints Pi and the
center of mass of each link Gi.

Appendix F. Biped Dynamics. In this section we will cover some of the more
detailed calculations for the five-link biped model of walking, including kinematics,
single stance dynamics, heel-strike dynamics, and gradients. We will assume that
the reader has a solid understanding of the dynamics of rigid body mechanisms, as
well as experience in deriving equations of motion using a symbolic algebra computer
package, such as the MATLAB Symbolic Toolbox [38].

F.1. Kinematics. Let’s start by defining the position vectors that point from the
origin P0 to each joint of the robot, Pi and the center of mass of each link Gi, as
shown in Figure 20. Each of these position vectors is dependent on the configuration
of the robot, Pi = Pi(q) and Gi = Gi(q), where q = [q1 q2 q3 q4 q5]

T is a column
vector of absolute link orientations. We will define P0 = 0.

There are many ways to compute the position vectors. Here we work from the
root joint P0 outward along the kinematic chain, defining each successive position Pi
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torso stance femur

stance tibia

swing femur

swing tibia

swing foot
stance foot

hip

stance knee

Fig. 21 Dynamics model for the five-link biped model, shown here in single stance. We assume that
the dynamics are planar (2D) and modeled as a kinematic chain, with each link assigned a
number: 1 = stance tibia, 2 = stance femur, 3 = torso, 4 = swing femur, and 5 = swing
tibia. Each joint is connected to its parent by an ideal revolute joint and torque source.
Joint torques are given by ui, link masses and inertias by mi and Ii, and gravity is g. The
absolute orientation of each link is given by qi.

in terms of a previously defined position vector Pi−1 and a relative vector in the link
frame.

Once the position vectors are defined, we compute velocity and acceleration vec-
tors using the chain rule. The velocities are given below, where q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5]

T

is the vector of absolute angular rates:

(F.1) Ṗi =

(
∂Pi

∂q

)
q̇, Ġi =

(
∂Gi

∂q

)
q̇.

The calculation for the acceleration vectors is carried out in a similar fashion, although
we need to include the joint rates in the list of partial derivatives. We can do this by
defining z = [q q̇]T and ż = [q̇ q̈]T , where q̈ = [q̈1 q̈2 q̈3 q̈4 q̈5]

T :

(F.2) P̈i =

(
∂Ṗi

∂z

)
ż, G̈i =

(
∂Ġi

∂z

)
ż.

Both of these calculations (F.1) and (F.2) can be implemented in MATLAB with the
following commands, where all variables are defined to be column vectors:

>> dP = Jacobian(P,q)*dq;
>> dG = Jacobian(G,q)*dq;
>> ddP = Jacobian(dP,[q; dq])*[dq; ddq];
>> ddG = Jacobian(dG,[q; dq])*[dq; ddq];

F.2. Single-Stance Dynamics. In trajectory optimization it is best to use a min-
imal coordinate formulation of the dynamics: one where there is one equation for
each degree of freedom. For this example we will use the absolute angle of each link
in the robot for the minimal coordinates, as shown in Figure 21, and compute their
accelerations (the equations of motion) using the Newton–Euler equations. Although
it is possible to derive these equations by hand, we suggest that you use a computer
algebra package for the derivation, such as the MATLAB Symbolic Toolbox [38] or
the Python Symbolic Library [56].

The goal of the dynamics calculations is to arrive at a set of equations defining
the link accelerations q̈ in terms of the link angles q, rates q̇, and torques u =
[u1 u2 u3 u4 u5]

T . Here we will use computer algebra to generate a linear system of
equations, which we will then solve numerically at run time for the accelerations q̈.
It turns out that this approach is significantly faster (in both run time and derivation

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

30
.2

25
.9

3.
13

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 899

time) than solving for the joint accelerations explicitly:

(F.3) M(q) · q̈ = F(q, q̇,u).

For our five-link biped, there are five linearly independent equations required to
construct (F.3), one for each degree of freedom. One way to construct such a system is
to write out the equations for angular momentum balance about each successive joint
in the robot. Here we will start with the angular momentum balance of the entire
robot about the stance foot joint (below). Note that the left side of the equation is a
sum over all external torques applied to the system about point P0, the stance foot.
The right side of the equation gives the time rate of change in the angular momentum
of the system about P0:

(F.4) u1 + k̂ ·
5∑

i=1

(
(Gi−P0)× (−mi g ĵ)

)
= k̂ ·

5∑
i=1

(
(Gi −P0)× (mi G̈i) + q̈i Ii k̂

)
.

The next equation is obtained by simply moving one joint out along the robot, com-
puting the angular momentum balance about the stance knee P1:

(F.5) u2 + k̂ ·
5∑

i=2

(
(Gi−P1)× (−mi g ĵ)

)
= k̂ ·

5∑
i=2

(
(Gi −P1)× (mi G̈i) + q̈i Ii k̂

)
.

The remaining three equations are given below, following a similar pattern. Notice
that the pattern breaks down slightly at the hip joint, because links 3 and 4 are both
connected to the hip joint P2:

(F.6) u3 + k̂ ·
5∑

i=3

(
(Gi−P2)× (−mi g ĵ)

)
= k̂ ·

5∑
i=3

(
(Gi −P2)× (mi G̈i) + q̈i Ii k̂

)
,

(F.7) u4 + k̂ ·
5∑

i=4

(
(Gi−P2)× (−mi g ĵ)

)
= k̂ ·

5∑
i=4

(
(Gi −P2)× (mi G̈i) + q̈i Ii k̂

)
,

(F.8) u5 + k̂ ·
5∑

i=5

(
(Gi−P4)× (−mi g ĵ)

)
= k̂ ·

5∑
i=5

(
(Gi −P4)× (mi G̈i) + q̈i Ii k̂

)
.

F.3. Heel-Strike Dynamics. For our biped walking model, we will assume that
the biped transitions directly from single stance on one foot to single stance on the
other: as soon as the leading foot strikes the ground, the trailing foot leaves the
ground. This transition is known as a heel-strike map. We will also assume that this
transition occurs instantaneously and that the robot is symmetric.

There are two parts to the heel-strike map. The first is an impulsive collision,
which changes the joint velocities throughout the robot, but does not affect the con-
figuration (angles). The second part of the map swaps the swing and stance legs. The
leg swap is done to enforce a symmetry in the solution: we want the step taken by
the left leg to be identical to that for the right, and for both to be periodic.

Figure 22 shows the biped model immediately before and after the heel-strike map.
Notice that the old swing foot P−

0 has become the new stance foot P+
5 after the map.

Similar renaming has been applied throughout the robot and can be computed using
the equation:

(F.9) q+ =

⎡
⎢⎣
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎦ q−.D
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old stance foot new stance footcollision lift-off

before
heel-strike

after
heel-strike

Fig. 22 Illustration of the kinematics of the five-link biped model both before − and after + heel-
strike. Note that the points on the robot are relabeled during the collision, reflecting the
left-right symmetry of the robot.

Next we derive a linear system that relates the angular rates before and after the
collision. Like the single stance dynamics, we will solve this system numerically at
run time:

(F.10) MH(q−) · q̇+ = FH(q−, q̇−).

One way to derive this system of equations is to observe that it must conserve angular
momentum about the collision point, as well as all joints in the robot. The five
equations defining the system are given below. Notice that the left side of each
equation is the angular momentum before heel-strike, taken about the swing foot
(which is about to become the new stance foot). The right side of each equation
is the angular momentum after heel-strike, taken about the stance foot (which was
previously the swing foot). Figure 22 shows the naming conventions used throughout
these equations. Note that the structure of these equations is somewhat similar to
those used for the single stance dynamics:

k̂ ·
5∑

i=1

(
(G−

i − P−
5 )× (mi Ġ

−
i )+ q̇−i Ii k̂

)
= k̂ ·

5∑
i=1

(
(G+

i − P+
0 )× (mi Ġ

+
i ) + q̇+i Ii k̂

)
,

(F.11)

k̂ ·
4∑

i=1

(
(G−

i − P−
4 )× (mi Ġ

−
i )+ q̇−i Ii k̂

)
= k̂ ·

5∑
i=2

(
(G+

i − P+
1 )× (mi Ġ

+
i ) + q̇+i Ii k̂

)
,

(F.12)

k̂ ·
3∑

i=1

(
(G−

i − P−
2 )× (mi Ġ

−
i )+ q̇−i Ii k̂

)
= k̂ ·

5∑
i=3

(
(G+

i − P+
2 )× (mi Ġ

+
i ) + q̇+i Ii k̂

)
,

(F.13)

k̂ ·
2∑

i=1

(
(G−

i − P−
2 )× (mi Ġ

−
i )+ q̇−i Ii k̂

)
= k̂ ·

5∑
i=4

(
(G+

i − P+
2 )× (mi Ġ

+
i ) + q̇+i Ii k̂

)
,

(F.14)

k̂ ·
1∑

i=1

(
(G−

i − P−
1 )× (mi Ġ

−
i )+ q̇−i Ii k̂

)
= k̂ ·

5∑
i=5

(
(G+

i − P+
4 )× (mi Ġ

+
i ) + q̇+i Ii k̂

)
.

(F.15)
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AN INTRODUCTION TO TRAJECTORY OPTIMIZATION 901

Our final step is to combine (F.9) and (F.10) into the heel-strike map equation,
shown below, where x− is the state of the system before heel-strike and x+ is the
state after heel-strike:

(F.16) x− =

[
q−

q̇−

]
, x+ =

[
q+

q̇+

]
,

(F.17) x+ = fH

(
x−).

F.4. Gradients. For trajectory optimization, it is generally a good idea to use
analytic gradients where possible. This means that we will need to calculate the
following expressions:

(F.18)
∂q̈

∂q
,

∂q̈

∂q̇
,

∂q̈

∂u
,

∂q̇+

∂q− ,
∂q̇+

∂q̇− .

Unfortunately, we can’t use the Jacobian() command in the symbolic software, be-
cause we plan to calculate q̈ and q̇+ by numerically solving a linear system at run time.
The solution is to use the symbolic software to compute the gradients of M, F , MH ,
and FH and then derive an expression for the gradient of q̈ and q̇+ in terms of these
known matrices. We start by deriving the gradient of the matrix inverse operator:

M−1M = I,(F.19)

∂

∂qi

(M−1M)
= 0,(F.20)

∂

∂qi

(M−1
)M + M−1 ∂

∂qi
(M) = 0,(F.21)

∂M−1

∂qi
= −M−1 ∂M

∂qi
M−1.(F.22)

We will now apply (F.22) to compute the gradient of the link accelerations q̈ with
respect to a single link angle qi. This process can then be repeated for the partial
derivatives with respect to the remaining joint angles, rates q̇i, and torques ui. These
same calculations (F.25) can be applied to the heel-strike calculations:

∂q̈

∂qi
=

∂

∂qi

(M−1F) ,(F.23)

∂q̈

∂qi
=

(
−M−1 ∂M

∂qi
M−1

)
F + M−1

(
∂F
∂qi

)
,(F.24)

∂q̈

∂qi
= M−1

(
−∂M

∂qi
q̈ +

∂F
∂qi

)
.(F.25)
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[64] A. Wächter and L. T. Biegler, On the implementation of primal-dual interior point filter
line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006),
pp. 25–57, https://doi.org/10.1007/s10107-004-0559-y. (Cited on p. 888)

[65] H. Wang and S. Xiang, On the convergence rate of Legendre approximation, Math. Comp.,
81 (2011), pp. 861–877. (Cited on p. 896)

[66] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, Hybrid zero dynamics of planar
biped walkers, IEEE Trans. Automat. Control, 48 (2003), pp. 42–56, https://doi.org/10.
1109/TAC.2002.806653. (Cited on pp. 873, 875, 896)

[67] T. Yang, E. R. Westervelt, A. Serrani, and J. P. Schmiedeler, A framework for the
control of stable aperiodic walking in underactuated planar bipeds, Autonomous Robots,
27 (2009), pp. 277–290, https://doi.org/10.1007/s10514-009-9126-y. (Cited on p. 873)

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

30
.2

25
.9

3.
13

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://doi.acm.org/10.1145/2558904
http://doi.acm.org/10.1145/2558904
http://www.cs.ubc.ca/~van/papers/2015-TOG-terrainRL/index.html
http://www.cs.ubc.ca/~van/papers/2015-TOG-terrainRL/index.html
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.1177/02783640122067309
https://doi.org/10.1515/jnum-2014-0003
http://www.elissarglobal.com/academic/products/
https://doi.org/10.1007/978-3-540-45056-6_21
https://doi.org/10.1007/978-3-540-45056-6_21
https://doi.org/10.15607/RSS.2014.X.049
https://doi.org/10.15607/RSS.2014.X.049
https://doi.org/10.1038/nature04113
http://www.sympy.org
http://www.sympy.org
https://doi.org/10.1137/050641296
https://doi.org/10.1016/0010-406X(70)91006-6
https://doi.org/10.1145/1276377.1276395
https://doi.org/10.1145/1360612.1360624
https://doi.org/10.1109/9.192187
https://doi.org/10.1109/9.192187
http://www.sim.informatik.tu-darmstadt.de/publ/download/1999-dircol-2.1-guide-short.pdf
http://www.sim.informatik.tu-darmstadt.de/publ/download/1999-dircol-2.1-guide-short.pdf
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1007/s10514-009-9126-y


c© 2019 Society for Industrial and Applied Mathematics

An Introduction to Trajectory Optimization:
How to Do Your Own Direct
Collocation—Correction to Equation (4.13)

Matthew Kelly∗

1. Introduction. In the original paper [1] there is an error in equation (4.13). This error
was caused by incorrectly computing the integral from the previous equation. This is an isolated
error: there are no other equations that depend on it, and it was implemented correctly in the
attached electronic supplement.

Original (4.12) (correct, included for context). Equation (4.12) shows the state interpo-
lation equation for Hermite–Simpson direct collocation. It is expressed here as an integral using
the system dynamics at the collocation points. Note that τ = t− tk and hk = tk+1 − tk.

x(t)=

∫
ẋ dt=

∫ [
fk +

(
− 3fk +4fk+ 1

2
−fk+1

)(
τ

hk

)
+

(
2fk − 4fk+ 1

2
+2fk+1

)(
τ

hk

)2
]
dt.

Original (4.13) (incorrect, should follow from (4.12)). Equation (4.13) shows the state
interpolation equation for Hermite–Simpson collocation and is derived by solving the integral
from (4.12). In this case the segment duration hk was incorrectly treated as a time-varying term,
allowing it to be grouped with the time τ :

x(t) = xk + fk

(
τ

hk

)
+

1

2

(
−3fk+4fk+ 1

2
−fk+1

)(
τ

hk

)2

+
1

3

(
2fk−4fk+ 1

2
+2fk+1

)(
τ

hk

)3

.

Updated (4.13) (correct, follows from (4.12)). In this version of the equation the segment
duration hk is treated as constant (with respect to time) and gets pulled out of the integral rather
than being grouped with the time τ . This equation is correct and also matches the interpolation
equation found in the OptimTraj software (included in the electronic supplement):

x(t) = xk +

(
fk

)
τ +

1

2hk

(
− 3fk + 4fk+ 1

2
− fk+1

)
τ2 +

1

3h2k

(
2fk − 4fk+ 1

2
+ 2fk+1

)
τ3
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