Source code for irlc.ex11.feature_encoder

# This file may not be shared/redistributed without permission. Please read copyright notice in the git repo. If this file contains other copyright notices disregard this text.
"""

References:
  [SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018. (Freely available online).
"""
from math import floor
from gymnasium.spaces.box import Box
import numpy as np
from irlc.ex09.rl_agent import _masked_actions
from irlc.utils.common import defaultdict2

[docs] class FeatureEncoder: r""" The idea behind linear function approximation of :math:`Q`-values is that - We initialize (and eventually learn) a :math:`d`-dimensional weight vector :math:`w \in \mathbb{R}^d` - We assume there exists a function to compute a :math:`d`-dimensional feature vector :math:`x(s,a) \in \mathbb{R}^d` - The :math:`Q`-values are then represented as .. math:: Q(s,a) = x(s,a)^\top w Learning is therefore entirely about updating :math:`w`. The following example shows how you initialize the linear :math:`Q`-values and compute them in a given state: .. runblock:: pycon >>> import gymnasium as gym >>> from irlc.ex11.feature_encoder import LinearQEncoder >>> env = gym.make('MountainCar-v0') >>> Q = LinearQEncoder(env, tilings=8) >>> s, _ = env.reset() >>> a = env.action_space.sample() >>> Q(s,a) # Compute a Q-value. >>> Q.d # Get the number of dimensions >>> Q.x(s,a)[:4] # Get the first four coordinates of the x-vector >>> Q.w[:4] # Get the first four coordinates of the w-vector """
[docs] def __init__(self, env): """ Initialize the feature encoder. It requires an environment to know the number of actions and dimension of the state space. :param env: An openai Gym ``Env``. """ self.env = env self.w = np.zeros((self.d, )) self._known_masks = {} def q_default(s): from irlc.utils.common import DiscreteTextActionSpace if s in self._known_masks: return {a: 0 for a in range(self.env.action_space.n) if self._known_masks[s][(a - self.env.action_space.start) if not isinstance(self.env.action_space, DiscreteTextActionSpace) else a] == 1} else: return {a: 0 for a in range(self.env.action_space.n)} self.q_ = defaultdict2(lambda s: q_default(s))
@property def d(self): """ Get the number of dimensions of :math:`w` .. runblock:: pycon >>> import gymnasium as gym >>> from irlc.ex11.feature_encoder import LinearQEncoder >>> env = gym.make('MountainCar-v0') >>> Q = LinearQEncoder(env, tilings=8) # Same encoding as Sutton & Barto >>> Q.d """ raise NotImplementedError()
[docs] def x(self, s, a): """ Computes the :math:`d`-dimensional feature vector :math:`x(s,a)` .. runblock:: pycon >>> import gymnasium as gym >>> from irlc.ex11.feature_encoder import LinearQEncoder >>> env = gym.make('MountainCar-v0') >>> Q = LinearQEncoder(env, tilings=8) # Same encoding as Sutton & Barto >>> s, info = env.reset() >>> x = Q.x(s, env.action_space.sample()) :param s: A state :math:`s` :param a: An action :math:`a` :return: Feature vector :math:`x(s,a)` """ raise NotImplementedError()
[docs] def get_Qs(self, state, info_s=None): """ This is a helper function, it is only for internal use. :param state: :param info_s: :return: """ if info_s is not None and 'mask' in info_s and not isinstance(state, np.ndarray): if state not in self._known_masks: self._known_masks[state] = info_s['mask'] # Probably a good idea to check the Q-values are okay... avail_actions = _masked_actions(self.env.action_space, info_s['mask']) self.q_[state] = {a: self.q_[state][a] for a in avail_actions} # raise Exception() # from irlc.utils.common import ExplicitActionSpace # # zip(*self.q_[state].items()) from irlc.pacman.pacman_environment import PacmanEnvironment from irlc.pacman.pacman_utils import Actions if isinstance(state, np.ndarray): actions = tuple(range(self.env.action_space.n)) elif isinstance(self.env, PacmanEnvironment): # actions = Actions # actions = tuple(Actions._directions.keys()) actions = _masked_actions(self.env.action_space, info_s['mask']) actions = tuple([self.env.action_space.actions[n] for n in actions]) else: actions = tuple(self.q_[state].keys()) # if isinstance(self.env, PacmanEnvironment): # # TODO: Make smarter masking. # actions = [a for a in actions if a in self.env.A(state)] # actions = Qs = tuple([self(state,a) for a in actions]) # TODO: Implement masking and masking-cache. return actions, Qs
# # actions = list( self.env.P[state].keys() if hasattr(self.env, 'P') else range(self.env.action_space.n) ) # Qs = [self(state, a) for a in actions] # return tuple(actions), tuple(Qs)
[docs] def get_optimal_action(self, state, info=None): r""" For a given state ``state``, this function returns the optimal action for that state. .. math:: a^* = \arg\max_a Q(s,a) An example: .. runblock:: pycon >>> from irlc.ex09.rl_agent import TabularAgent >>> class MyAgent(TabularAgent): ... def pi(self, s, k, info=None): ... a_star = self.Q.get_optimal_action(s, info) :param state: State to find the optimal action in :math:`s` :param info: The ``info``-dictionary corresponding to this state :return: The optimal action according to the Q-values :math:`a^*` """ actions, Qa = self.get_Qs(state, info) if len(actions) == 0: print("Bad actions list") a_ = np.argmax(np.asarray(Qa) + np.random.rand(len(Qa)) * 1e-8) return actions[a_]
def __call__(self, s, a): """ Evaluate the Q-values for the given state and action. An example: .. runblock:: pycon >>> import gymnasium as gym >>> from irlc.ex11.feature_encoder import LinearQEncoder >>> env = gym.make('MountainCar-v0') >>> Q = LinearQEncoder(env, tilings=8) # Same encoding as Sutton & Barto >>> s, info = env.reset() >>> Q(s, env.action_space.sample()). # Compute Q(s,a) :param s: A state :math:`s` :param a: An action :math:`a` :return: Feature vector :math:`x(s,a)` """ return self.x(s, a) @ self.w def __getitem__(self, item): raise Exception("Hi! You tried to access linear Q-values as Q[s,a]. You need to use Q(s,a). This choice signifies they are not represented as a table, but as a linear combination x(s,a)^T w") # s,a = item # return self.__call__(s, a) def __setitem__(self, key, value): raise Exception("Oy! You tried to set a linearly encoded Q-value as in Q[s, a] = new_q_value.\n This is not possible since they are represented as x(s,a)^T w. Rewrite the expression to update Q.w.")
class DirectEncoder(FeatureEncoder): def __init__(self, env): self.d_ = np.prod( env.observation_space.shape ) * env.action_space.n # self.d_ = len(self.x(env.reset(), env.action_space.n)) super().__init__(env) def x(self, s, a): xx = np.zeros( (self.d,)) n = s.size xx[n * a:n*(a+1) ] = s return xx ospace = self.env.observation_space.shape simple = False if not isinstance(ospace, tuple): ospace = (ospace,) simple = True sz = [] for j, disc in enumerate(ospace): sz.append(disc.n) total_size = sum(sz) csum = np.cumsum(sz, ) - sz[0] self.max_size = total_size * self.env.action_space.n def fixed_sparse_representation(s, action): if simple: s = (s,) s_encoded = [cs + ds + total_size * action for ds, cs in zip(s, csum)] return s_encoded self.get_active_tiles = fixed_sparse_representation # super().__init__(env) @property def d(self): return self.d_ return 10000*8 x = np.zeros(self.d) at = self.get_active_tiles(s, a) x[at] = 1.0 return x class GridworldXYEncoder(FeatureEncoder): def __init__(self, env): self.env = env self.na = self.env.action_space.n self.ns = 2 super().__init__(env) @property def d(self): return self.na*self.ns def x(self, s, a): x,y = s xx = [np.zeros(self.ns) for _ in range(self.na)] xx[a][0] = x xx[a][1] = y # return xx[a] xx = np.concatenate(xx) return xx class SimplePacmanExtractor(FeatureEncoder): def __init__(self, env): self.env = env from irlc.pacman.feature_extractor import SimpleExtractor # from reinforcement.featureExtractors import SimpleExtractor self._extractor = SimpleExtractor() self.fields = ["bias", "#-of-ghosts-1-step-away", "#-of-ghosts-1-step-away", "eats-food", "closest-food"] super().__init__(env) def x(self, s, a): xx = np.zeros_like(self.w) # ap = self.env._actions_gym2pac[a] ap = a for k, v in self._extractor.getFeatures(s, ap).items(): xx[self.fields.index(k)] = v return xx @property def d(self): return len(self.fields)
[docs] class LinearQEncoder(FeatureEncoder):
[docs] def __init__(self, env, tilings=8, max_size=2048): r""" Implements the tile-encoder described by (SB18) :param env: The openai Gym environment we wish to solve. :param tilings: Number of tilings (translations). Typically 8. :param max_size: Maximum number of dimensions. """ if isinstance(env.observation_space, Box): os = env.observation_space low = os.low high = os.high scale = tilings / (high - low) hash_table = IHT(max_size) self.max_size = max_size def tile_representation(s, action): s_ = list( (s*scale).flat ) active_tiles = tiles(hash_table, tilings, s_, [action]) # (s * scale).tolist() # if 0 not in active_tiles: # active_tiles.append(0) return active_tiles self.get_active_tiles = tile_representation else: # raise Exception("Implement in new class") # # Use Fixed Sparse Representation. See: # https://castlelab.princeton.edu/html/ORF544/Readings/Geramifard%20-%20Tutorial%20on%20linear%20function%20approximations%20for%20dynamic%20programming%20and%20RL.pdf ospace = env.observation_space simple = False if not isinstance(ospace, tuple): ospace = (ospace,) simple = True sz = [] for j,disc in enumerate(ospace): sz.append( disc.n ) total_size = sum(sz) csum = np.cumsum(sz,) - sz[0] self.max_size = total_size * env.action_space.n def fixed_sparse_representation(s, action): if simple: s = (s,) s_encoded = [cs + ds + total_size * action for ds,cs in zip(s, csum)] return s_encoded self.get_active_tiles = fixed_sparse_representation super().__init__(env)
[docs] def x(self, s, a): x = np.zeros(self.d) at = self.get_active_tiles(s, a) x[at] = 1.0 return x
@property def d(self): return self.max_size
""" Following code contains the tile-coding utilities copied from: http://incompleteideas.net/tiles/tiles3.py-remove """ class IHT: """Structure to handle collisions""" def __init__(self, size_val): self.size = size_val self.overfull_count = 0 self.dictionary = {} def count(self): return len(self.dictionary) def full(self): return len(self.dictionary) >= self.size def get_index(self, obj, read_only=False): d = self.dictionary if obj in d: return d[obj] elif read_only: return None size = self.size count = self.count() if count >= size: if self.overfull_count == 0: print('IHT full, starting to allow collisions') self.overfull_count += 1 return hash(obj) % self.size else: d[obj] = count return count def hash_coords(coordinates, m, read_only=False): if isinstance(m, IHT): return m.get_index(tuple(coordinates), read_only) if isinstance(m, int): return hash(tuple(coordinates)) % m if m is None: return coordinates def tiles(iht_or_size, num_tilings, floats, ints=None, read_only=False): """returns num-tilings tile indices corresponding to the floats and ints""" if ints is None: ints = [] qfloats = [floor(f * num_tilings) for f in floats] tiles = [] for tiling in range(num_tilings): tilingX2 = tiling * 2 coords = [tiling] b = tiling for q in qfloats: coords.append((q + b) // num_tilings) b += tilingX2 coords.extend(ints) tiles.append(hash_coords(coords, iht_or_size, read_only)) return tiles